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FOREWORD

This report, prepared by the Dynamics and Loads Section, Martin
Marietta Corporation, Denver Division, under Contract NAS5-11996,
presents the results of a study whose purpose was to develop a
computer program system for dynamic simulation and stability
analysis of passive and actively controlled spacecraft. The
study was performed from May 1973 to April 1975 and was admin-
istered by the National Aeronautics and Space Administration,
Goddard Space Flight Center, Greenbelt, Maryland, under the di-
rection of Mr. Joseph P. Young.

The report is published in four volumes:

Volume I -~ Theory

Volume II -~ Program Users' Guide
Volume III -~ Demonstration Problems
Volume IV - Program Listing
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ABSTRACT

A theoretical development and assoclated digital computer program
system for the dynamic simulation and stability analysis of pas-
sive and actively controlled spacecraft 1s presented. The dynamic
system (spacecraft) is modeled as an assembly of rigid and/or
flexible bodies not necessarily in a topological tree configura-
tion. The computer program system may be used to investigate
total system dynamic characteristics including interaction effects
between rigid and/or flexible bodies, control systems, and a

wide range of environmental loadings. Additionally, the program
system may be used for design of attitude control systems and for
evaluation of total dynamic system performance including time do-
main response and frequency domain stability analyses.

Volume I presents the theoretical developments including a des-
cription of the physical system, the equations of dynamic equi-
librium, discussion of kinematics and system topology, a complete
treatment of momentum wheel coupling, and a discussion of gravity
gradient and environmental effects.

The development of synthesis and analysis techniques for the
linearized system includes a discussion of the numerical linear-
ization technique, procedures for definition of system transfer
functions, and linear time domain response.

Volume II is a program users' guide and includes a description of
the overall digital program code, individual subroutines and a
description of required program input and generated program out-
put.

Volume III presents the results of selected demonstration prob-
lems that illustrate all program system capabilities.

Volume IV contains a listing of the digital code.
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Applications of such methods and program systems are numerous
and include simulation of the Space Shuttle payload deployment/
retrieval mechanism, solar panel array deployment, antenna de-
ployment, analysis of multispin satellites, and analysis of
large, highly flexible satellites.

OQur approach provides a general-purpose modeling capability for
dynamic simulation and stability analysis of passive and actively
controlled spacecraft. In particular, the following items are
considered: (1) time domain solution of the nonlinear differen-
tial equations of motion that describe total or nominal response¥
of the complete spacecraft system idealized as a collection of
interconnected flexible (or rigid) bodies, (2) linearization of
the governing equations by numerical means, (3) time domain so-
lution of the linearized equations that describe the perturbation
response of the complete spacecraft system about some predeter—
mined (calculated or user-specified) nominal motion, (4) general
frequency domain stability analysis corresponding to the linear-
ized spacecraft representation, and (5) provision for arbitrary
(explicitly time-dependent) loadings and environment interaction
such as gravity gradient and thermally induced deformations re-
sulting from solar radiation.

" DESCRIPTION OF THE PHYSICAL SYSTEM

The physical system undergolng analysis may be generally descri-
bed as a cluster of contiguous, flexible structures (bodies) that
comprise a mechanical system such as a spacecraft. The entire
system (spacecraft) or portions thereof may be spinning or non-
spinning. Member bodies of the spacecraft are capable of under-
going large relative excursions such as those of appendage de—
ployment, or rotor/stator motions. The general system of bodies
is, by its inherent nature, a feedback system wherein inertial
forces (such as those due to centrifugal and Coriolis accelera-
tion) and the restoring and damping forces are motion dependent.
Also, the system may possess & control system, wherein certain
position and rate errors are actively controlled through use of
reaction control jets, servomotors, or momentum wheels,

% The total response of the dynamic system may be, in certain
cases, considered to be equilibrium state motion (nominal
response) plus perturbation motion with respect to the
equilibrium state.
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Bodies of the system may be interconnected by linear or nonlinear
springs and dampers; they may be interconnected via a mechanism
that is a combination of gimbal and slider block, or any combi-
nation of the above. Also, any two bodies of the system may be
free (one from the other) and possess six degrees of relative
motion freedom. Also, several or all of the six degrees of rel-
ative motion freedom, between two bodies, may be a prescribed
function of time (including zero motion).

For purposes of further introduction of the physical system, let

us consider an 1llustrative example, such as the system of bodies
of Figure I-1, and let this example be the prototype for all sub-
sequent discussion and development.

In Figure I-1, we have deliberately indicated a nontopological
tree configuration., There are five hinges and four bodies, thus
one closed path, Consecutive integer labels are used for body
reference points, for hinges, for sensor points, and for momen-
tum wheels, The numerical order within each of the four label
sets ma random; however, it is understood that body 1 (which

may be any body of the system) is associated with hinge 1.

For each body of the system, there is a body-fixed, right-handed
reference frame, whose origin may be at the body's mass center
or at some structural hard point on the body (a body's elastic
deformation i1s measured in its reference frame).

In this work a hinge is defined to be a pair of structural hard
points (see Figure I-2) with a point situated on each of two con-
tiguous bodies. In Figure I-2, point p and point q comprise a
hinge. Clearly, a typical body may contain one or more hinge
points, but a hinge may be associated with only two bodies.
Hinge 1 is given special consideration. It is also a pair of
points; but one of the pair is coincident with the reference
point of body 1, and the other point of the pair is coincident
with the inertial origin, Thus, motion "across the hinges" is
used to represent system motion. The reference point of body 1
is located with respect to the inertial origin by an inertially
referenced position vector. The attitude of the reference frame
of body 1, with respect to the inertial frame, is represented by
three Euler angles. Thus, there are six position/attitude co-
ordinates associated with hinge 1.

I-3



Body Reference Point
Hinge
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Pigure I-1 Labeling Scheme for Example System

Figure I-2 Typieal Contiguous Bodies of the System
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Each of the remaining hinges 1s considered in a manner somewhat
similar to that of hinge 1. Referring to Figure I-2, we note
that there is an orthogonal reference frame attached to point p
and another to point q. The triad of point p may have a 'natu-
ral" (or undeformed) misalignment with respect to the triad of
body point m plus additional misalignment due to E}3§§{g~és:_-
formation. The same relationship is true concerning the points

n and q.

Now there are, assoclated with the hinge of polnts p and q, six
relative position/attitude coordinates. Point q is located from
point p with a p-frame referenced position vector. The attitude
of the q-frame with respect to the p-frame is represented by
three Euler rotations. Thus, if NH is the number of system hinges,
then there are 6 x NH position coordinates to be used in conjunc-
tion with modal displacement coordinates to define the system's
position state. Let it be noted that only the time variable
position coordinates of the 6 x NH set of candidates are consi-
dered as state vector elements (the position coordinates whose
rates are constrained to zero are not included; however, the po-
sition coordinates themselves need not be zero).

The system of bodies generally has a number of so-called "sensor
points." We define a sensor point to be a structural hard point,
which has a right-handed orthogonal reference frame attached,
that is used for a variety of purposes. A sensor point may be
used to enable the program system to monitor the position, atti-
tude, or the rates associated with a specific structural hard
point. For example, a rate gyro, a star tracking device, or
other motion/position sensing device is physically situated at a
sensor point. Also, a sensor point is used as a point of appli-
cation of a force or torque vector (see Figure I-2).

The system of bodies may contain built-in momentum wheels, some
of which are constant speed wheels and others are variable speed.
The variable speed momentum wheels are motor driven; the shaft
torque results from a given control law, Each momentum wheel

of the system must be associated with a sensor point because,

for a general flexible body, the gyroscopic coupling is influ-
enced by elastic motion.

As is indicated in Figure I-1, the system may be in a non-topo-
logical tree configuration. The methods employed in this develop-
ment are such that closed loop conﬁiggzggigﬂﬁ_iﬂﬁnﬁlﬁlll.EQiﬁI:
red to as nontopological) may be considered. If every body of

the N-Body system is rigid, then of course there may be no closed
loops, because such a system has an indeterminate "load path."

I-5



To accommodate closed loops, the system must contain sufficient
structural flexibility (compliance), and therefore modal dis-
placement coordinates, that the kinematic equations of intercon-
nection constraint are algebraically consistent.

The program development is such that none, several, or all bod~-
ies of the N-Body system may be flexible. The system may be
"forced" by such environmental factors as gravity, gravity gra-—
dient, solar pressure, thermal gradient, and aerodynamic drag.

The computer program system described herein falls into several
categories of capability: (1) synthesis and time domain solution
of the nonlinear differential equations of motion of the com-
plete spacecraft system idealized as a collection of intercon-
nected flexible (or rigid) bodies, (2) linearization of the
governing equations by numerical means, (3) time domain solu-
tions of the linearized equations that describe perturbation
response of the complete spacecraft system about some predeter-
mined (calculated or user-specified) nominal motion, and (4) gen-
eral frequency domain stability analysis corresponding to the
linearized spacecraft representation,



II.

[II-1]

[11-2]

[11-3]

. [11-4]

EQUATIONS OF STATE -~ TIME DOMAIN SIMULATION

INTRODUCTORY DISCUSSION

The state equations governing the dynamic response of a system
of interconnected flexible bodies, that may be actively or pas-
sively controlled and that may be "forced" by environmental fac-
tors such as solar pressure, gravity gradient, aerodynamic drag,
etc. are presented here in a concise summary form as:

1. = m1o (tey, + (v1°F
i1, = [n] ({ }, + [b]] {A}),

[E}j = [Sglj {U]j ,

(8) 231, U,
3
(6) = £ (183, (83, (£}, (&), (s1),

subject to the constraint equations

[11-5] 2: (bl {U}j = {a}.
3

In Equations II-1 through II-5 the index } ranges from 1 through
the number of bodies of the system. Equations II-1 through

II-4 represent n first order, nonlinear, ordinary differential
equations while Equation II-5 represents m additional conditions
of kinematic constraint. Thus, the dimension of the state space
for a given system of controlled bodies 1is (n-m). That is,
there are n-m state variables required to define the configura-
tion at any instant of time t.

State variables of the configuration space include absolute ve-
locities, {U},, modal displacements {£{}j, position coordinates
(both angular-and cartesian pgsition) {B}, and additional vari-
ables (6} that we will subsequently refer to as control vari-
ables; they are variables associated with the differential equa-
tions that define a given control law. However, they may reflect
any other auxiliary differential equations that are necessary

to define the overall feedback system; for example, they may in-
clude thermal equilibrium states or other state variables neces-
sary to complete definition of a state dependent environment,



The right-hand sides of Equations II-1 through II-4 are func-
tionally dependent on all the state varilables and time, although
the relationships may be only termed implicit at this point.

Let it suffice that, in a way of introduction, a description of
the nature of the governing Equations II-1 through II-5 be given
here, and that more explicit development and discussion follow
in subsequent chapters,

The Equations of I1I-1 represent the dynamic equilibrium equations
for the typical jth body of the system., They are of the form
shown whether the body is treated as rigid or flexible. They
state, in effect, that a deformation dependent mass matrix [m]j’

z
postmultiplied by a vector of relative accelerations {U}j, pro-

duces a vector of inertial forces that is balanced by all other
state and time dependent forces {G}j and interconnection con-

straint forces, [b]§ {)}. The vector {G}j includes inertial

forces due to centrifugal and Coriolis acceleration, as well as
elastic restoring forces, damping forces, control actuator for-

ces, and so forth., The constraint forces [b]T {\A} are necessary

in order that the kinematic constraint equations (II-3) are sa-
tisfied; elements of the vector {A} are actually Lagrange multi-

pliers, evaluated and used in the solution process.

The Equations of II-2 simply represent a selection transforma-

tion, because the vector of modal velocities {;;}j is a subvector

of {U}j

a kinematical transformation, transforming nonholonomic veloc—
ities to time derivatives of position coordinates. Finally,
the Equations of II-4 are auxiliary differential equations that
are user defined and may be used to implement control dynamics
and other feedback effects.

. The Equations of II-3, used to develop {B}, represent

The constraint Equations of II-5 are kinematic conditions of a
form similar to those of Equation II-3. In either case, we have
a velocity transformation. We might term Equation II-5 an ac-
tive set of kinematic conditions and those of Equation II-3 a
passive set. The active set 1s used to calculate m of the de-
pendent elements of the {U}j vectors in terms of the remaining

independent elements and the prescribed velocities {&}, some of
which may be zero and some user-defined functions of time. Thus,
the constraint equations are of a general form because nonholo-
nomic, rheonomic conditions may be so represented, Given that
the {U}j vectors satisfy the required conditions of Equation

I1I-5, then tne position rates, {8}, may be evaluated via the
passive conditions of Equation II-3, resulting in a kinematically
consistent system.
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[1I-6]

[11-7]

[II-3]

[II-3]

[II-10]

[II-11]

[1I-12]

[I1-13] |

[1I-14] [

[11-15]

[I1-16]

Note that there are m equations of constraint represented by
II-5. There are also m Lagrange multipliers in the vector {A}.
Most often, in studies of dynamic systems, the Lagrange multi-
pliers and the dependent velocities and accelerations are en-
tirely eliminated from the governing equations. Such 1s not
the case in our development. We have chosen to involve Lagrange
multipliers in our equations for two reasons: (1) we wish to
monitor the multiplierg as a function of system motion, as they
are intercon S an s, and (2) for purposes of
numerical implementation it is convenient to calculate and use
the {A} vector in Equation II-1. The Lagrange multipliers are
calculated by differentiating Equation II-5 and combining that
result with equation II-1 giving

-1
_ -1 T .. _ . -1
(A} = zj, [b]j [m]j “’]j {a} Z [b]j {U}j + [b]j [m]j {G}

]
Wotice the following functional dependencies:
(b1, = ¢ ({s}j, (e}, ),
(8] = £ ({82, (&), ).
thus
{8} = £ ({s}, {g}, {u}) ,

{U}

{E}
(5 = £ (183, (B}, (€}, (£}, (&); ¢ ),
{G} £l{g}, (ul, {6}. t ),
- ¢ ({
- ¢ ({s}, (8}, (&), {é}) ,
thus
A} = £ ({a}. {8}, {u}, (£}, {B}, {&}; ¢t ),
and {0} = £ ({a}, (8}, (Ul (&}, 1B}, (8}; ¢ )
where, 1in the above notation, we mean that the elements of the
matrices/vectors on the left are functions of the elements of

the vectors on the right. The chronology, of evaluations ipdjcated
is that which must _be followed in the solution process.

II-3
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The differential equations of motion for the system are therefore,
of the general form:

(11-17] 5’1 = f(Yll Y2y ** » yn_m; t )’

and the state vector and its time derivative are arranged as fol-

lows:
— = —
{y} = |{u}; {y} = r{ﬁ}l
U}, {ﬁ}z
{U}NB {ﬁ}NB
{eh {t}
{g}2 {£}2
(e} (&)
B1 él
B2 B2
Byg Bxg
8 8
52 5,
GNG L-GNG

with NB the total number of bodies of the system, N8 the total
number of position coordinates necessary to orient the system
and N§ the total number of auxiliary (control) differential
equations required.
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Now, given that the {y} vector is known (numerically) from pre-

scribed initial conditions or from numerical integration of {§},
the primary task of the solution process is to numerically es-

tablish the {y} vector. The {§} vector 1s numerically (step by
step) integrated so as to produce an incremented {y} vector, thus
a sequence of time point solutions.

In way of summary, a narrative description of the steps (numeri-

cal evaluations) necessary to produce {y} given {y}, follows.

The matrices [B]j and [b]j are kinematic coefficients that de-

pend on position and modal displacement variables, and are eval-
uated as the first step.

Now, if available numerical techniques (also computer software
and hardware) were absolutely accurate, we would be assured that
the {U}, vectors, resulting from numerical integration of the

3

{0} vectors, would satisfy the constraint equation II-5., This

3

is not the case, therefore the second step of the solution pro-
cess Is to calculate the dependent elements of the {U}j vectors

by using Equation II-5. In fact, due to anticipating numerical
inaccuracies, only the independent elements of the {U}j vectors

are obtained by numerical integration. There are only n-m "in-
tegrators" involved in the solution process even though all of

the elements of the {U}, vectors are numerically evaluated (by

b

use of Equation II-1); we have good numerical resolution in the

independent {U}, elements due to using the Lagrange multipliers

(A}, J

A kinematically consistent system results from satisfying Equa-
tion II-5. The {U}j vectors may now be used with the selection

and kinematic transformations as indicated by Equations II-2 and

I1I-3 to produceé (numerically) all the modal velocities {é}j and

position coordinate rates {é} completing the third step of the
process, )

Sufficient calculation has been completed to this point to then
evaluate the control variable rates as per Equation II-4, pro-
ducing {8}. During the process of calculating the {8} vector,
all of the required control actuator torques (or forces) are
calculated, because sufficient numerical information is avail-
able. All of the constituents of the torques/force vectors {G}j’

are now available and therefore {G}j, [m]j and ['B]j are numeri-

cally evaluated, (refer to the functional expressions of Equa-
tions II-11 through II-14), which completes the fourth step of
the process.
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With reference to Equation II-6, we note that there is now suf-
ficient numerical information to evaluate {A}, which is then used

in Equation II-1 to calculate the {ﬁ}j, completing the fifth and

final step of the process,

It is noted in the above discussions that the solution process
may be carried out through completion, providing the state vec-
tor is numerically known. At any step of a simulation, the {y}
vector is known, of course, as the result of numerical integra-
tion. The initial state vector is another matter. It is diffi-
cult, if not impossible, for a user to prescribe {U}j vectors

that are kinematically consistent with the conditions of Equa-
tion II-5; also, the nonholonomic velocities of {U}j, when con-

sidered as a complete set, are of a somewhat abstract nature.
The user is in a much better posture to prescribe initial values

of {B} and {&} (the initial velocities that are physically mean-
ingful to him). Thus, to initiate the simulation (that is, to
create an initial state vector from information the user is in
a position to prescribe) some preliminary steps must be taken,
as follows.

The user must prescribe initial values of the {E} {E}j, {8},

{B} and {8} ,vectors; also the variable speed momentum wheel spin
velocities 6. Now, in that {a} (the prescribed position rates),
are explicitly dependent on time and are always available, the

kinematic Equations II-3 and II-5 may be used together to estab-
lish initial values of all {U}j. The question inevitably arises:

are the number of equations represented by II-3 and II-5 suffi-
cient to solve for the elements of the {U}j? Let us consider

the typical {U}j vector. We note that there are six reference

frame veloclties in each {U}j, namely, W wy, Wy Uy v, and w.

There are also six relative velocities associated with each
hinge. Now, if the system is a topological tree configurationm,
then the Equations of II-3 and II-5 comprise exactly the re-
quired number of equations to establish the reference frame ve-
locities; that is, there are as many hinge points as there are
bodies and even if every body were rigid, the system would be
determinate. 1In this case, the initial sets of six reference
frame velocities are computed via Equations II-3 and II-53; the

prescribed initial {é) vectors and momentum wheel spin veloci-
ties are simply placed in the appropriate {U}j vectors, and the

initial state vector is thus defined.
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In the event that the system is not a topological tree configu-
ration, then there are more equations (II-3 and II-5) to be
satisfied than there are reference frame velocities (or in other
words, there are more hinges than bodies). In this case, ele-
ments of the {£}, vectors must take on the responsibility of

3

helping to satisfy the kinematic conditions. For each hinge

in excess of the number of system bodies there must be at least
six deformation modes, represented by £ coordinates, and they
must be distributed throughout the system in such a way that

the kinematic conditions of Equation II-5 are independent.
Clearly then, when there are more hinges than bodies (nontopo-
logical tree), one or more of the bodies must be flexible for
the system to be determinate. Now, when the configuration 1s
nontopological, the user will specify initial values for all of
the £, but he must acknowledge that they are not all independent
and the dependent ones (automatically determined by the program)
are calculated and replace the values that he has specified.

From these considerations, we note that the initial state vector
is created by the program from information that is user supplied
and that 1is physically meaningful to him. His only concern, re-
garding initial conditions, is: whether he has supplied an ade-
quate description of system flexibility, in the event of a non-
topological tree configuration, for the system's kinematical
equations to be determinate.

DERIVATION OF EQUATIONS OF DYNAMIC EQUILIBRIUM

The differential equations of motion and auxiliary equations that
characterize a physical system may take any one of several equi-
valent forms. By equivalent form, we mean that the same physi-
cal system can be characterized by more than one set of mathe-
matical variables; in any case, the number of variables must be
the same. For example, the motion equations for a rigid body
might be derived by using Lagrange's equations (resulting in

six second-order equations), or one might use the Newton-Euler
equations where translational motion 1s represented by three
second~-order equations while rotational motion 1s represented

by six first-order equations (three moment-momentum equations
and three attitude equations). In each case, there are 12 state
variables.

I1-7



oy There are a varilety of alternative methods of analytical dynamics
that one may select from to develop his final (programmable)

[ equation format. A timely and valuable commentary accompanies

the comprehensive comparative evaluation of these methods in a

recent report by Likens*, The basis for our development is ef-

fectively included in his discussion.

Our intent is not to highlight any particular method of analyt-
ical dynamics as being superior to the others. Clearly, the
methods are all equivalent providing that they are developed
through completion without any compromising simplifications.

The choice of method is made after considering the requirements
associated with a particular problem or computer simulation pro-
gram. Our development begins with a Lagranglan approach, then
through algebraic manipulation we arrive at the format of Equa-
tions I1I-1 through II-3.

Lagrange's equations for the general situation appear as
m

[11-18]51—— e #2228 AV =Q, + a,, A
dt \aq 34, 9q, 9q 3 it
3 3 3 ] =1
for (j=1,2,** n)
n
7 E aij qJ ta, = 0
j=1

for (i=1,2,°* m)

: ' In these equations, T and V are system kinetic and potential en-
ergles, respectively, and D is the Rayleigh dissipation function
(accounting for internal damping). The generalized constraint

forces E : aji Xi) augment the generalized forces Qj (that arise
i

due to the action of external factors) and are necessary in order
that the additional conditions of constraint (the second set of
Equation II-13 be satisfied. The form of the Equations II-18

is complete and general, in that they include unconservative
forces (explicitly time dependent Qj and dissipitive forces

BD// Bij and the auxiliary constraint equations (the second set

of Equation II-18) are in an all encompassing form, because

*Likens, P. W., "Analytical Dynamics and Nonrigid Spacecraft Sim-
ulation," Technical Report 32-1593, Jet Propulsion Laboratory,
Pasadena, California, July 15, 1974.
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nolonomic conditions may be so represented. The coefficients
(aij’ j=1, 2, *+, n; t) may depend explicitly on the time (t),

thus the constraint conditions as shown account for both rheo-
nomic and scleronomic situations.

In the equations, n is the number of generalized coordinates in-
volved in the representation and m is the number of auxiliary
conditions of constraint. Note that, although the qj are gener-

alized coordinates (as they must be for the Lagrangian formula-
tion) they are independent only in the isolated case when m=0,
or when there are no auxiliary constraint conditions. The wri-
ter has observed that some engineers share a misconception on
this point, thinking that if the variables q, are not indepen-

dent then they are not generalized coordinates. In view of the
m constraint equations, we simply have a set of generalized co-
ordinates that are not independent.

In cases where all of the constraint equations are holonomic,
it is theoretically possible to eliminate m of the qy in terms

of the remaining n-m. However, if any of the constraint condi-
tions are nonholonomic, a Lagrange multiplier (Ai) must be used

in conjunction with that equation. Lagrange multipliers may,
of course, be used for either nolonomic or nonholonomic con-
straints.,

In that the simulation program includes mathematical representa-
tion of active or passive control for elements of the spacecraft
system, there are state equations involving control variables
that are additional to II-13. The manner in which the additional
control equations enter into the composite system state equations
is the same whether we are talking about the form given by Equa-
tion II-1 or that of Equation II-13. The control system state
varlables retain their identity in either case although the con-
trol forces/torques necessary to '"close the loop" are trams-
formed differently. In the case of Lagrange's equations, the
control torques contribute to the generalized forces Qj whereas

in the case of the summary Equations II-1, they contribute to
elements of {G} and may be interpreted to be ordinary forces or
torques, acting at a structural hard point (or at a sensor point).
Thus we will postpone further discussion of the control system
until later, concentrating on the "mainline" motion equations
until such a point when we can clearly indicate control system
coupling.
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In order to "solve'" Lagrange's equations of motion, one must first
define the explicit form of the kinetic and potential energy func-
tions, the dissipation function D, and he must also define the
form of the transformation relating ordinary cartesian position
coordinates (positioning the typical system particle or element)
to the generalized coordinates 9y the form of the transformation

1s necessary to be able to express generalized forces Qj in terms

of external ordinary forces. Having defined the form of the en-
ergy functions and coordinate transformation, one merely per-
forms tne indicated differentiations (II-13). He has not yet
solved the motion equations but has only explicitly defined a
system of ordinary second-order differential equatioms, which
in many cases are nonlinear, and which require solution using
numerical integration techniques.

With numerical implementation and digital programming in mind,
we wish to recast the form of the ordinary differential equa-
tions., First of all, we would like for them to result in canon-
ical first order form (the highest time derivatives appear un-
coupled on the left hand side). Also, we would like to group
complicated combinations of generalized velocities and displace-
ments so that we may replace such groups with new variable names.
The new variables we refer to have been called "quasi-coordi-
nates" in the literature. This will simplify the required com-
puter programming and minimize arithematic computation. Also,
it helps considerably in organizing the numerical algorithms
necessary to evaluate the left hand side of the state equations.
Thus, recasting the form of the governing equations is suffi-
clently justified.

We begin the recasting process by defining the forms of kinetic
and potential energy, and the required transformation. First
let us note that bodies of the system of flexible bodies are
tentatively treated as though they were completely independent,
one of the otner. The influence of any one body on another is
accounted for through the additional constraint conditions and
the Lagrange multipliers. Thus, 1f we express kinetic and po-
tential energiles for the typical body and apply Lagrange's equa—
tions to it, the ordinary differential equations pertaining to
it are simply a subset of Equation II-13; and we will have ac-
counted for the total system through the representative form of
the typical body.
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The generalized coordinates chosen to represent the configuration
of the typical body include three Euler angles to indicate atti-
tude of the body fixed axis system relative to an inertial frame,
three projections (components) of the position vector from the
origin of the inertial frame to the origin of the body fixed ref-
erence system, onto the inertial axes, and N elastic displace-
ment coordinates, We note that the origin of the body fixed axis
system needn't necessarily coincide with the body's mass center.
Also, the elastic displacement coordinates may be measurements

of displacement at a discrete set of points on the body or they
may be coordinates associlated with normal vibration modes. In
either case, they represent displacements measured in the body

axis system, For the rth flexible body, we tabulate its gener-

alized coordinates as:

— -~

{a .} = |¢
8 > Attitude
Euler Angles

J
“
Y Body's Reference
Point Position
\

A Coordinates
€1
£2

Elastic Dhisplace-
. > ment Coordinates
£
ey

Now, there exists a transformation that relates a set of nonhol-
onomic velocities to the generalized velocities that is exten-
sively used in recasting the equations. The transformation
appears as follows:
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[1I-19]

[11I-20]

x LB §! T12 1T13‘ | ¢
“y Ty T2 mas| | 9
w, T3y T3z "33: : v
u [Yir = iz Y13| X
v | = lv21 v22  v23) v
W I1{31 Y32 \(33| 5
| = - —— S E ——
3 | |1 £
N
* I ' . .

[ ] l I L]

: | | . .

3 3

N N
L1 L I | o

where in Equation II-19 the vector of nonholonomic velocitles
{U} contains the three projections (wx, my, mz) of the angular

velocity vector W onto the body fixed axes (W is the angular ve-
locity of the body reference frame), the three projections of
the reference point tramslational velocity (u, v, w) onto the

body fixed axes and the displacement rates {é}. The elements
of the transformation Yij (i, j=1, 2, 3) are direction cosines;

the submatrix [y] is an orthonormal rotation transformation re-
lating the attitude of the body fixed axils system to the iner-
tial frame. The submatrix [7] is also a rotation transforma-
tion; however, it is not orthonormal because it relates vector
components based on an orthogonal basis to those of a skew (non-
orthogonal) basis; namely the axes about which Euler rotations
are measured.

In short, we write
{u} = [8] {q}.

Clearly the elements of [B] are functions of the three Euler
angles. There are 12 possible sets of Euler angles. Any one
set is valid for use in subsequent development; the resulting
equation form is independent of selection from the 12 sets of
angles,
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Elements of the transformation [8] may be explicitly defined in
terms of three of the generalized coordinates (the Euler angles).

The kinetic energy expression for the rth body is most easily

expressed (initially) in terms of the nonholonomic velocities

{U}. Having done this, [B] is used to replace {U} with [B] {q}.

l The kinetic energy is then expressed completely in terms of gen-
eralized displacements and velocities (the form necessary for
applying Equation II-18).

Kinetic energy for the typical bedy is

[II-21] T =% vevodV
\

where V is the velocity field, ¢ is mass density, and where in-
tegration is carried out over the volume V of the body.

Tae inertial position of any point p of the body is (See Figure
II—l . )

[11-22] T = “)ER +Bp + T

with'ER being the inertial position of the body's reference point

(R, the origin of the body axis system), T positions the point
p” (which coincides with p in the undeformed configuration) from

point R, and where W (x, y, 2, t) is a measure of elastic dis-
placement.

The vectors By and N are referenced to the body axis system,
thus

[11-23] Fp = l.-f 7 EJ x

¥

4

and

—_— - ¢, (x, ¥y, 2)| & (t)) ;
[II-24] 7 (x, ¥, 2, t) = li 3 kJ ( xk k

k=1 ¢yk (%, ¥, 2)
¢ (X0 s z)

the elastic displacement n is represented as the superposition
of a finite number of single valued space functions ¢k.
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Axis System

rth Flexible Body

"/ X Inertial
e Reference Frame

h

Figure II-1 The rt" Flexible Body
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The velocity fileld v is obtained as

[II-ZS]V=3-E-VR+TEx(’p'0 +ﬁ)+§:$k £

%
with Vk = _f& .

dt
The velocity of the reference point R may be expressed in terms

of components referenced to either the inertial frame or the
body frame, that is

[11-26] Vg = l_I J KJ %],
Y
also _2_
VR =|_T_ k) _E_J [u]
vl -
v

The unit vectors {1, j, k}, {I, J, K} are related through the
rotation transformation [y] and it follows that

[11-27] |u X
vi= [yl |¥Y]|.
w z

At this point, let us introduce the repeated index summation con-
vention to be concise. With this convention, when any two fac-
tors of a term have the same index, summation over the range of

that index is implied and the}E:sign is deleted. TFor example,
the third term on the right of Equation II-25 is

% Sk

and represents

1,

Now, if we substitute II-25 into II-21, the kinetic energy is

II-15



(II-28] T = % {V cvptlEx e+ [wx (pp +M]

o~

+ 2 [@x (EQ-P'TT)]'?FkEk odV
or, integrating term by term over V,

[11-29] T = % m Luva {u v w}

+]/2I-U) w wJ J =-J -J w
Xy z XX Xy . Xz b

-J J -J w
yx yy yz y
-J - J w
zZX 2y zz z
" .
+ 2 ejk Ej gk
+ Lu v wJ 0 S -S w
z y b4
-S 0 S w
2z X y
Sy --Sx 0 wz
+ l_u v wJ a K Ek
ayk
82k
+ l-w w wzJ <k Ek
dyk
dzk

winere we have used

[II-30] m = /ch
\'

= 2 2
T / [ + by5 §)2 + (2 + ¢, £)2] odV
v

- - + ) E. &
[1I-31] S 2(byyj + bzzj) Ej + (cyjyk ©zyzk’ %3k
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[I1-32] b =

yizk /'byj Y2 .
v

Also, we have used

[II-33] a Pk

W f e
-

[II-34] e ( b * byq byt bo ¢zk) odV
v

[II-35] S / x + ¢xj Ej) cdV
v

= Sxo + axj Ej’

[11-36] d_, = /[ (y * 9y Ej) ¥k '( 2 %5 8 ) ¢yk] odv
v
b

1 =

yzk = Pzyk +(°yj 2k ~ czjyk) &y
and also,

[T1-37] ny -L(x + d)xj Ej) (y + ¢yj Ej) odV

= J +|b +5b R
Xyo ( Xy} yxj) 5 xjyk Ej :
All other quantities involved in Equation II-29 are obtained by
cyclic permutation of the indexes x, y, and z. Finally, as the
kinetic energy 1s of quadratic form in the elements of {U}, we
may express it as a triple matrix product

I1-17



[1I-38] T = % [U] [m] {U}
with —

[1I-39]} m] = Jxx Xy Xz
d , *+d

(Symmetric)

e

or in short,

[1I-40]

Using Equations II-40, II-19, and II-38 gives

[11-41] T = % Lé‘_l (81T [m] [8] (q}.

Clearly, the elements of [m] depend on only the Ek; the elements

of [B] depend on the Euler angles and therefore kinetic energy is
a function of generalized velocitles and the generalized coordi-
nates themselves, thus, the functional notation

T=T (Qh q2, *°* qn; ‘.11' 212’ i qn)
is applicable; terms such as 3?/3qj will come about and play an

important role in the simulatiom.
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To continue it is necessary to express the potential energy V
and dissipation function D. Let us assume that the elastic
strain energy can be written as a positive-definite quadratic
form in the elastic displacement coordinates, or

[11-42]1 V = % L;J (k] {(€};

the symmetric matrix [k] is developed by standard finite ele-
ment techniques such as those embodied in NASTRAN. In the event
{€} is a set of normal modal coordinates, then [k] is diagonal

with the jth diagonal element appearing as
; 2
k,, = w
33 b
with w, being the jth natural frequency. Of course, normaliza-

3

tion of the eigenvectors (mode shapes) is assumed such that the

[T1-43]

generalized mass for the jth vibration mode is unity.

Now, since
=44 ey = roj01,) tad

= [SE] {q}
it follows that

T
- = L .
[11-45] v = % |a] 15,17 (k] [s.] {a)
Similarly, D is written as
(r1-46] 0 = % | a] 15,17 [c] Is}{al,
the matrix [C] being equivalent viscous damping for the struc-—

ture; it is also developed using standard finite element tech-
niques.,

Let us now refer back to Lagrange's Equations (II-13), and re-
express them in matrix format

[II-47] 4 T . T .
Ty ([3] [m] [B] {q}) - -[Sg] ([k] [Sg] {q} + [C] [SE] {q})

+{Q) + % [AJ 6 1" [m] [8] {é}}

A RO NI R I L N OLR WS WO R P NLEY
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[1I-48]

[1I-49]

[I1-50]

[II~51]

[11I-52]

[11-53]
[II-54]

[II-55]

[11-56] [8]7!

and
[al{q} = -{a ]} .

What is meant by [B j] and [m ] is the partial derivative of

every element of [8] and [m] with respect to the j th generalized
coordinate.

Let us now define the ordinary momenta
{p} = [m] [B] {q}
= [m] {U} .
Also, since {U} = [B] {q}
it follows that {q} = (817! {U}.

Using Equations II-49, II-50, II-47, and 1I-48, we may write
{p} = N [SEJT([k] [SE] {q} + [C] [s;] {i})

+[817'T (qt + [s]‘lT(ilﬁJ s ,1" {p}} - 181" {p}

T

+5 87!t {LUJ [m 4] {U]} + (8171 [a1" (01,

and
[a] (817! (U} = {-a }.

Several observations can be made on studying Equations II-51 and
II-52:

First of all, recall the form of [B8] and [SE] (Equations II-19
and II-44)., It is clear from these forms that

-1T T . T
[B] [sgl z [SE]

and that [SE] {q} = {&}
and [8,] {q} ={£}.

Also, since the elements of [m] depend only on Ek’ the first six
elements of }|UJ [m j] {U}lare null, thus
) 1

T{ (u] [m’J] {U}} = {LU] [m ,] {U}} .
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Further, we note that the matrix [B]-lT transforms the general-
ized forces {Q} to forces "acting in the quasi-coordinates,' or
let us call

. -1T
[11-57] {Gex} = [B] {Q},

thus {Gex} contains ordinary forces and moments due to external

sources and corresponds to time derivatives of the ordinary mo-
menta.

Because the transformation [B] depends only on the Euler angles,
it follows that only the first six elements of the column

[31‘”({ laJ 18 4] {p}} - 8"} {p})

are non-zero, and one finds after considerable algebraic manip-
ulation that this column may be reexpressed as

(&1 {p}
or ™~ | { ar 7
- - - (
(11-58] (3] {p} = 0 w, Uy : 0 w v : plw)
—w, 0 Wy :-w 0 u : P(my)
wy  —y : v -u 0 : P(wz)
——'--"'4,-5-:,;:w;1----~ YO
:-wz 0 w : p(v)
: wy u 0 : p(w)
““““ I e B
| | p&)
i l '
! l ’
{ | .
- ! I i LP(EIq)d

With these observations and definitions, the Equations II-51 and
II-52 may be reexpressed as

oy 0 o] .. «
[11-59] {p} = {Gex} - E:} {g} - Eé] {g} + [al{p}
+ % {LUJ [m’j]{U}} + [b1T (3,

. [II-60] and [bl1{U} = {a}
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[II-61]

where we have used
[b] = [a] [B]?

and

[11-62] {a} = ={a.}.

[1I-63]

[1I-64]

ilotice that the constraint equations (II-60) are now expressed in
terms of the nonholonomic velocities {U}; the coefficients [b]
are obtained directly from relatively simple, vectorial expres-
sions of kinematic conmstraint. The same [b] coefficients are
transposed and used to multiply {A}, producing constraint forces/
torques corresponding to the ordinary momenta.

If we now define the {G} vector to be

{c} = {Gex} - Eg} {¢} - E—;} (£} + [8) [m] {U}

+ /z{ LECIRICH }- [m]{u}
14
it follows that we may write dynamic equilibrium equations for

the typical rth body as
. - -1 T
1, = W7 {ie, + 11 o)

to be used in conjunction with system kinematic constraint equa-
tions

[11-651 [b]_ {u} = {a}
r

which is the same form as that given by Equations II-1 and II-5.

The last three terms of {G} given in Equation II-63 are inertial
forces that involve velocities and displacements of the body.
The matrix [m] is an instantaneous inertia matrix, depending on
instantaneous values of the deformation coordinates {g}. The
centrifugal and Coriolis effects are completely accounted for
within the framework of the assumed velocity field (given by
Equation II-25). These effects would not be accounted for if

we neglected "tangential” velocity due to elastic displacement;

that is, if we assumed that | x 7|<<|@ x Bo|. In this case, the
inertia would be constant, independent of {£}.
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An accurate definition of the dynamic equilibrium equations
clearly hinges on a complete and accurate definition of the con-
stituents of the {G}r vector, which includes the inertia matrix

[m]r. Also, the kinematic coefficilents [b]r must be developed

in an exact fashion., Kinematics and a more explicit development
of {G} are given in subsequent sections.
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[11-66]

KINEMATICS AND SYSTEM TOPOLOGY

From a Lagrangian formulation all of the generalized forces, not
derivable from a potential function, ordinarily appear as {Q} on
the right side of Lagrange's equations of motion. We have accounted
for internal damping forces with the use of Rayleigh's dissipation
function D and for generalized constraint forces through use of
Lagrange's multipliers.

Thus, the generalized forces that remain to deal with include those
due to external factors such as aerodynamic drag, solar pressure,
and other commonly encountered environmental loadings.

We also intend to treat control forces (servodrive torques, reac-
tion jets, etc.) as though they were external. They are not ex-
plicitly external, of course, because they depend on time through
position and rate errors that are functions of elements of the

state vector and on control system state variables that arise from a
given control law.

Let us assume that there is a finite number of points on the typ-
ical body where a force vector (or torque) is known to act. Each
of these force/torque vectors contributes to the generalized
forces {Q}. The generalized forces are calculated by expressing
the virtual work of the external ordinary forces in terms of vir-
tual displacements of the points of force application. The trans-
formation relating ordinary coordinates to generalized coordinates
is then used to define the explicit form of the generalized forces.

For example, suppose that a force f; and torque T% act at point p
of the typical body. Their virtual work 1is

SW = f_ + T =« 86 .
p "8, T % P
Notice that we treated the virtual rotation 63; as a vector quantity.

This is valid, even though a general rotation 1s not a vector quan-
tity, for the virtual rotation 1s infinitesimal and therefore is
a vector. Further, because virtual displacements are infinitesimal,

we may express 6?5 and 655 in terms of virtual displacements of

the quasi-coordinates; that is
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[11-67] S?p = [I 3 'EJ ( 8t 0, (zp +n

zp yp
) + I- + +
r (zp nzp), 0, (xp nxp)
8rj
+ - +
(yP nyp)’ (xP ‘nxP)‘ 0
oy G v0 2) 65j)
¢yj (xpa yp) zp)
¢zj (xp! yp! zp)
and
[II-68] SEP = Li 3 kJ ( S8, | * [ oxs (xp, Yy zp) aaj)
(Y] c .
y ¥3 (xp’ Yo zp)
é6
g s Z
ZJ L_zj (xp’ Yp P)

where (8rj, 8rp, Sr3) are components of virtual displacement of
the body's reference point R, (aex, aey, GBZ) are components of

virtual rotation of the body axis system, and (cxj’ ij’ czj)

-

are components of the jtn space function G, representing elastic

]

rotation at point p (modal slopes, for example).

Now, let us assume that the force and torque vectors Cfp and i})

are referenced to the body axis system, thus they may be written
as

[11-69] F, = [T 3 F] fxpT
£
yp
and £
[11-70] T = |T 3 gJ T | -
T
¥p
T
zp
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We note that virtual displacements of the quasi-coordinates are
related to virtual generalized displacements by the same trans-
formation that relates nonholonomic velocities to generalized ve-
locities (See II-13). It follows that the virtual work due to

?5 and Té may be written as

T T 7
II-71] W = |§ 1 -(z + + T
[ ] L.QJ (8] (zp nzP) yp nyp Xp
1 |z + -(x + T
zp nzP ( p nxP) yp
~(y_+t + T
1 (yP nyp) XP nXp zp
1 ' £
Xp
1 f
~ yP
1 f
o o o
XI)P yi)p | %21)p ¢x1)p ¢y1)p ¢z1)p
axN)p OyN)p czN)p ¢xN)p ¢yN)p ¢zN)p (6+N x 6)
- -

The virtual work is also expressed

6W = kq] {qQl,

and because 8q, is arbitrary and independent (it is treated as
J

thougn independent in the face of Lagrange multipliers and con-
straint equations) it follows that

T
T
[11-72] {Q} = (81 Ib_] { p}
P f .
) %
The Equations II-71 or II-72 have a noteworthy geometrical in-
P

T
T
terpretation. Notice that the first three lines of [bp] {f }
P

are components of the resultant torque vector T§+(Eb¥ﬂ) b4 ?%,

acting at the body's reference point R. The second three lines are
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components of the resultant force vector ?;, while the jth line

(3;>6) corresponds to the standard procedure (of structural dynam-
icists) to calculate QEj' or as it 1s usually expressed, general-

ized forces acting in deformation modes are

Q) = (617 (£}.

Also, recalling the form of [B], (Equation II-19), we note that

T
[7]" resolves the resultant torque vector (about orthogonal body
axes) to components about skew axes about which Euler rotations

are measured wnile [7]T resolves the resultant force vector (about
orthogonal body axes) to components along the inertial axes. Further,
we notice that [bp] is a matrix of coefficients that relates the

velocity of any point p to the vector {U}, This gives us some ad-
ditional insight as to why the same coefficients that are used in
the kinematic constraint equations (II-60) are used (in transposed
form) to multiply {A} producing resultant comnstraint forces.

Thus, we have pointed out the remarkable duality of purpose asso-
ciated with [b] type coefficients., They are initially expressed
by writing simple kinematlc velocity relationships. The coeffi-

clents [b]T are then used to transform discrete ordinary forces

and torques to equivalent forces and torques acting through the
body's reference point R. The matrix [B], which is also a velocity
transformation, is transposed to produce the transformation to
generalized forces (should they be desired).

For our ordinary momenta equations we simply wish to express {Gex}
which (following Equation II-57) is given by
-1T

[1I-73] {Gex}p = [8] {qQ}
-1T , T 7 )T
= [B] (81" [b_]
P
T P

. 4T }'p
= {b_] .
£
P P

This {Gex}p given by II-73 reflects only the contribution of the
force/torque acting at a single point p. The total {Gex} must be
obtained by summing over all the points of tne body where forces

and torques act, or

: T TP
- = i
[11-74] {G_ )} 2: [bpi] ¢ .
i=1 Py
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Kinematic coefficients [bp] such as those of the previous example,

will be required throughout in our formulation of the state equa-
tions. They are used to synthesize the constraint equations, to
produce {G}, and they are even involved in the velocity transfor-
mation of II-3. It is therefore advantageous for us to think of
a "bank" or collection of all the required kinematic coefficients
to be put together in a semiautomatic fashion by using input
specifications to the digital program.

1. Sensor Point Kinematics - Force/Torque Transformations

Consider the typical structural hard point s (See Figure II-2).
Let us assume a right-handed triad is fixed to point s and that

the elements of the triad are unit vectors labeled %, m, and m.
Now body n (which has point s on it) also has a right-handed
triad fixed to point n. Suppose that, even when body n is in an
undeformed state, the s-triad is misaligned with respect to the
n-triad. When the body deforms there may be further angular mis-
alignment between the two triads. Thus, the relationship linking
the two sets of unit vectors is

[11-751] % E
@ |- [sas,] E,Rn:J 3
T k

with [sRs’] and [s‘Rn] being orthonormal rotation transformations,

the first relating the "maturally" misaligned triads via constant
Euler rotations and the second accounting for additional rotation
due to the body's deformation at point s,

The structural deformation at point s is assumed to be sufficiently
small that the Euler rotations assoclated with [s’Rn] may be eval-

uated through use of
[11—76] 6,

62| = [0 ] (g},

€3

where [c ] is a (3xN) matrix of modal rotation amplitudes (each

of the N columns corresponds to a deformation mode) at point s.
Let us consisely denote the triads associated with points n and s

by {Eh} and CES} respectively. Then we may express the relation-

ship linking the two sets of unit vectors as

]

[11-77] {E;}
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Figure II-2 Two Typical Contiguous Bodies of the System
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There is a requirement for expressing the absolute velocity of a
typical s—point and the angular velocity of the typical s-triad,
in subsequent kinematic development, in terms of velocity states
of a given body. Let us think of a six long vector (column) of

velocity components (three rotational and three translational)

that are projections of E; and Vg onto the s-triad axes, It is

related to the {U}n vector for the body by the transformation

N €} - o)
[11-73] o B - W
o N SN R EN AT |
w = ! I w
zs | _ _ _ _ |_ _ I_ — F4
ug : | :;-—
- %) ba]: (21 e = :
L m
&1
£2
£y )
[

with [hS] and [US] representing matrices of displacement and ro-
tation amplitudes, respectively, and with [Séz)] being an anti-

symmetric matrix accounting for a vector cross product, or

_ (m)| _ _
(11-79] [Sns] 9 i zs-"nzs ! (ys+ny.s)
-(z +nzs)| 0 | X +nxs
| |
ys+ny‘3 I (x +n ) | 0

The superscripts used in Equations II-73 and II-79 are used to
indicate the frame to which the velocity components are referenced.
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[I1I-80]

[II-31]

[I1-82]

[1I-33]

Kinematic coefficients such as those of Equation II-78 are gen-
erated for each so-called sensor point of the system of bodies.
They are used by the simulation program to produce contributions
to {Gex} from given force/torque components in the manner indi-

cated by Equation I1II-74,

Hinge Point Kinematics

Kinematics associated with hinges follows a line of development
somewhat similar to that of sensor poilnts. Consider the points
p and q (refer to Figure II-2) to be two structural hard points
associated with a given hinge. All necessary kinematics infor-
mation pertinent to the hinge is obtained through expressing the
velocity of point q relative to point p and in expressing the
relative angular veloclity between the q and p frames. It is conven-
lent that the angular velocity components are projections onto
skew axes (Euler angle rates) and that translational velocity com—
ponents are projections onto the axes of the p triad. Let us as-
semble the six relative velocity components into a column matrix
as

. {8}
{8}, )

{8} k

with {e}k being the three relative Euler angle rates and {A}k being

the three relative translational velocity components all pertain-

ing to the kth hinge. Wow tne column of relative velocities may
be expressed as

(Y = [by], (U}, + [b 1 (V)

with

=[]l @ - e ) [ T

CERES] B B ]

(b ] = (7] R

and
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In Equations II-82 and II-83 the rotation transformations [PRm]
and [an] are developed to include the effects of structural de-
formation in the sense indicated in Equation II~75; the rotation
transformations [1r]-1 and [qu] are developed in standard fashion

using tine three Euler rotations {e}k.

NOTE:

Hinge labels are circled;
body labels are not circled.

Figure II-3 Topology of a Typtical System

For purposes of further discussion, consider the system of bodies
of Figure II-3. Topology of the system is simply indicated by an
integer array we call ITOPOL, which is as follows:

1 2 3 4 5 6 7 8 -+—Hinge number

[ITOPOL] =[1 2 4 3 5 6 7 7 le—Body (n) relative to

0 3 2 6 3 1 5 2 e—Body (m)

The [ITOPOL] array, which is actual input to the simulation pro-
gram, 1s used to define system topology as indicated. Now, with
reference to the example shown in Figure II-3 and the correspond-
ing (ITOPOL) array, let us indicate the form of the velocity
transformation. We may write
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[I1-84]

|
| | | | -
(1) by | | | | ] 1 {vh
11
- [ , I | I
——_—-- —————— I ———————
(2) b | b | | | {u}l,
q P
l 2’2| 2,3| : l l
(3) b ' | v 1 | I {U}3
l p32‘ I 3'-+| | l
» I »
(4) + | b | | | b | {U}y
l 9 3 | Py e
I IR 2l _ — L o
(5) | s by | | {U}s
| 5,3] l S'SI |
_—— = = — — 1 '
() b | T - | b, | (Ul
P | ! q
5’1 ] S’SI
S IO R T [N D S
) | | ' o, | % 7 | oy
75 | 7,7 - T
S [ B IR N DU S
(3) s | | | | b,
| 8,2 | [ | | 8 7
L ’ p—

Body (1) (2) (3) (4) (5 (6) (7
Hi‘%— ! .

where [b ] and [b ] are matrices as defined in Equations
Pi,3 11,3

I11-81 and II-83 (with i=Hinge number and j=Body number). The ve-
locity transformations of Equation II-84 represent the "bank" of
all hinge kinematics coefficients previously mentioned, and pro-
duces every possible velocity component pertinent to hinges. Re-
ferring to the basic system equations II-3 and II-5, we note that
selected lines, or equations, from the bank (II-84) are taken to
represent constraint equations or position coordinate rate equa-
tions. The [B]j and [b]j coefficients of Equations II-3 and II-5

are simply subpartitions extracted from Equation II-34.
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To implement calculation of Lagrange's multipliers (refer to
Equation II-6) it is necessary to develop time derivatives of [b]j

coefficients. In a manner similar to above, where all [b]j co—

efficlents are extracted from the complete collections, the [I.S]j

matrices come from a collection of matrices whose members are

[b ] and [b ] which are developed 1in Appendix C.
4,3 Pi,j
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[11-85]

DEVELOPMENT OF THE {G}j FORCE VECTOR

The equations of dynamic equilibrium for the jth body of the sys-
tems are given in an earlier sectiom as Equations II-1, As was
noted there, the right-hand side includes a so-called {G}j.vector,

which accounts for all state dependent forces except for those
of interconnection constraint. Earlier in Chapter II (Equation
1I-63), the {G}j vector 1s presented in a somewhat more developed
form,

The purpose of this section is to provide more explicit develop-
ment of the elements contributing to {G}j. Let us account for

all contributions in the following expression (we omit the J sub~-_
script, understanding that we are dealing with the typical, or jtn
body) :
0 0 . .
{6} = {G__} - {¢g} - {g} + [9] [m] {U}
ex Kk c

+ % {LUJ [m’k] {U}} - [m] {U} + {c_,}+ {Ggg}.

The first term {Gex} has already been discussed in the previous

section (See Equation I1I-74), but we note here that the ordinary
force/torque components that produce {Gex} may be thougitof as a

miscellaneous force vector. Its presence provides the program
user latitude to include a variety of additional effects. Clearly,
it is the implement through which control forces/torques are

"fed back"” to the dynamic system,

The second and third terms of Equation II-85 have been previously
introduced. There is no implicit restriction on the stiffness and
damping matrices [k] and [C], nor is there a restriction on defi-
nition of the {£} coordinates; they will likely be coordinates
associated with orthonormal vibration modes in the majority of
cases. However, they may be physical (ordinary-discrete) displace-
ment coordinates as well, In the latter case, the [k] and [C]
matrices are generally coupled.
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The last two terms of Equation II-85 are included to account for
momentum wheel coupling and gravity effects respectively. The
treatment given to built-in momentum wheels is such that, in ad-
dition to producing a contribution to {G}, there is also a re-
quired extension to the form of the [m]j matrices. This is be-

cause momentum wheels are inertially coupled. Thus, there is

o sufficient requirement for a dedicated development concerning mo-
mentum wheels. The following two sections deal exclusively with
momentum wheel and gravity effects, respectively.

The remaining terms contributing to {G} are basic inertial effects
and involve the matrices [m], [m k], and [m]. With reference to
14

Equation II-39, the form of [m] is given corresponding to the
case where one has single valued space functions ¢, available to

him. Ordinarily, one does not have access to such a description
of the structure's deformation modes, due to the structural com-
plexity of typical spacecraft. The analyst should always be able
to obtain, .as data, matrices of modal amplitude ratios ("mode
shapes") and the corresponding structural mass matrix (generated
by use of finite element techniques). To accommodate data based
on the more practical definition of structural characteristics,
it is necessary to recast the inertia matrices [m] in a similar
but more general format. The generality of the development of
Section II.B is not compromised by extending the form of the in-
ertia matrix. The extended, or more general, inertia matrix is
developed in Appendix A, but here, for purposes of developing
inertial contributions to the {G} vector, let us accept the re-
sulting form; and present the kinetic energy expression as

[11-86] T =% | U] (Im)] + [m]y &, + [madyy £y & ) (U,

with the repeated index summation convention implied, and with
[mo] of the form
- - I s
[11-87] [mO] J 4-s ld

S Im a

e e
dT IaT le

| 1

that is it is just like the [m] given by Equation II-39 except
it is constant, independent of deformation. The constant iner-

tia matrix [mo], as given by Equation 11-87, is always of the
form shown regardless of the choice of "modal" columns. The form
of the matrices [m;] and [mp] is such as to accommodate the gen-
eral situation; that is, their definition includes inertial inte-

grals as defined for a continuous system, (Equations II-30 through
11-37), or as defined by structural mass matrices that are called

"lumped" or "consistent."

I1-36



The inertia matrix associated with Ej is

— —

IT-88 = | 2b -b -b a C
[ ] [mllj 1 I s{a; oy aj LS yz)jlg
2b2 —b6 (!L’ 0.5 0’6 (sz)jk

2b3 | a7 ag og L(ny)jli

0o o Oo0J|0 O© O

0 0 0
(Symmetric) O 0
0
— =]
and the one associzted with Ej Ek is
[11-89] [mzljk = |C11 ~Ci12 -C13
C22 ~C23 0 0 )
C33
0 0
0
(Symmetric)
L —
jk

Now, for N deformation modes associated with a given body, it is
understood that the range of the indices j and k is N, thus the
coefficients (Cll)jy’ (Clz)jk, o (ny)jk are stored as 9 (NxM)

3’ oo (be)j and
(Gl)j. (Gz)j, o (ag)j are stored as a (6xMN) array and a (9xN)

arrays of inertial integrals while (b1)j, (bs)

array respectively. Thus, from a programming standpoint, we
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note that there are 9N? + 15N storage..locations required to ac-
commodate the inertial integrals necessary to account for the
deformation dependent mass matrix. Of course, if a particular
body 1s rigid (N=0) then only the first (6x6) diagonal partition
of [mo] is used.

When the body is flexible (N>0) then the inertia matrix is cal-
culated from deformation states (Ej)and inertia integrals in the

manner indicated by Equation I11-86; the redundant operations due
to symmetry and null operations are avoided in the digital code.

Having an instantaneous numerical evaluation of the inertia ma-
trix, the term [?] [m] {U} is calculated and added to {G}, con-
sistent with the expression of Equation II-58.

It is now possible to express explicitly, the combination of the
remaining two inertial force vectors in terms of the inertial

integrals given in Equations II-88 and II-89. For purposes of
further development, let us define the combination as

[I1-90] {Gc} = {LUJ [m,k} {U}} - [m] {U}.
Thus, the first element of {Gc}’ corresponding to W is
+w, (bs)

[11-91] (G )1 = {-zux (by), + by (bu)

3 3 3
-u (@) - v (a2)y - W (a3),
(6 )4y &y - 20, (C11)yy 6y
tog [(C12)gy + (Cr2dyy] Eg +w, [(C13)yy + (C1adyp] &y Ej ,
the second element, corresponding to u  is
[1I-92] (G2 ={uw, (bu)j -2wy (bz)j tow, (bs)j
~u (uq)j - v (as)j -w (06)j

-(C + oy [(Clz)zj + Clz)jzl €,

zx)jk Ek
~2u. (C22)gy €y + v, [(C23)gy + (C23) gyl £y 4 8y,

the third element, corresponding to w, is

I1-38



[11-93] (63 ={u, (bs)j +uy (bg), - sz(b3)j=

3
-u (u7)j -v (aa)j -w (ug)j

_(ny)jk ék + mx [<C13)£j +-(C13)jz] El

+ wy [(C23)£j + (Cza)jz] € -sz <C33)2j &y téj ’

the fourth element, corresponding to u is
[11-94] (G )y = -{wx @)y +uy (@), +o, cay)j} S

the fifth element, corresponding to v is
[11-95] (G)s = -{wx (az)j +ug (0‘5)j t o, (“s)j} Ej

and the sixth element, corresponding to w is

+w, (a9) | & .

[II-96] (Gc)s = -; w (ag), + Oy (ap) jj j

k| 3

Finally, for the element k+6, corresponding to an inertial force
acting in the Ekcoordinate we have

[11-97] (C)yyq - w? [(C11)y &y + (B1)y]

o+

w; [(sz)kj Ej + (bz)k]

-+

wg [(033)kJ Ej + (ba)k]

W, W [(Clz)kj + (Clz)jk] £

Xy + (b“)k

3

w W [(013)kj + (Cla)jk] Ej + (bs)k

4

- mywz [(C23)kj + (C23)jk] Ej + (bs)k

+

W [(ul)k u + (az)k v + (ug)k w}

+

wy [(a“)k u + (as)k v + (as)k w)

; w, [(a-;)k u + (aB)k v + (019)k w)
+ th [(Cyz)kj - (Cyz)jk] + wy [(sz)kj - (sz)jk]
w

LCR (CHD NS CHP I | -
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From examining the composition of the inertial force <Gc)k+6 we

note that the first six bracketed terms represent centrifugal
forces (distance x omega-squared) acting in the deformation co-
ordinates, while the last bracketed terms of Equation II-97 rep-
resents Coriolis forces (velocity x omega).

MOMENTUM WHEEL COUPLING

The spacecraft system undergoing analysis may have several "built-
in" momentum wheels. A momentum wheel is generally taken to
mean a cylindrical or disk-shaped mass that spins about an axis
that is fixed to a structural hard point of a given body. The
wheel can be spun up or despun by an electric motor whose rotor
is part of the rotating mass. The shaft torque that acts to ac-
celrate the wheel also acts on the body in a negative sense pro-
viding active attitude control. The shaft torque is generally
governed by a control law that "senses" attitude and rate errors
of the body. In this development a momentum wheel is assumed to
be inertially symmetric about its spin axis.

Figure II-4¢ Typtecal Body-Momentwn Wheel Relationship
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To develop the inertial coupling effects of the typical momentum
wheel let us consider three unit vector bases:

[11-98] le_| = (1, T, kI,

[11-99] 1?31 = |2, m, nl,

[II-100]and 12&] = (2, m", 0’} .

The first triad is the body reference triad for body n, the second
is a sensor point triad (fixed to point s), and the third triad
is fixed in the momentum wheel. Now, one of the three unit vec-

tors of [E;J is coincident with one of the unit vectors of [;;];

that is, I; E; or ;'may be the spin axis depending on the prefer-
ence of the analyst. 1In Figure II-4 we have elected to show

n = n” as the common, or spin axis.

The absolute angular velocity of the lZ;j frame can be expressed
as

(11-10175, = (e ) [ R_] ({ws} + (2 ) e)
where {Pw} is an elementary 3-long position vector (it is null
except for unity in the first, second, or third locations cor-
responding to E;'E, or n being the spin axis) and é is the rela-
tive angular speed of the L;;J frame with respect to the [E;J

frame.

With the inertial characteristics assumed (axisymmetry) for the
wheel, and with the velocity expression of Equation II-101 the
total angular momentum vector for the wheel may be written as

{II-102]}h = [ewj [Jw] {ww}
- 5 ) (e + 2 8
with [Jw] diagonal with all diagonal values equal to JT except

the position corresponding to the spin axis, which is Jé: JT is

the mass moment of inertia about any axis perpendicular to the
spin axis and JS is the spin 1inertia for the wheel.
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The torque acting on the wheel (resolved to the [Es] frame) is
- d —
[TI 103] T [eSJ {1} at h
= legJ ([Jw] {ws} + {Pw} J 8
- [Qs] (3] {ws} - [Qs] {Pw} 3 e)
where we define an SK* operator such that

[ns] = SK¥* {ms}, or

[T1-104] v wsa —ug, Wey
- = %
W 4 0 Wy SK msz .
W2 Y51 0 ws3

The torque acting on body n at point s, due to the wheel is -T
and it drives the body's quasi-coordinate as

[11-105] {6~ } = -[SSJT([JWJ (b1 (U} + [3,) [B] {3 + (R} J B
-la ] 131 (w ) = [8,] {B.} I é)
with

~ - I |
[11-106] [b_] I:SR“] [I:O;os]

and also, as can be easily shown,
[1I-107] [ésl {u}_ = [sx*([snn] [0,] {fr,}n)] [b,] {u}_.

Now, the shaft torque 1is simply the projection of T onto the
spin axis, or

[11-103] T = LPWJ {t} '
-3, l_P‘*lJ (6,1 (), + 3, pr_l (b1 (U} + 3, 8 .

Equations II-105 and II-103 allow us to now express the coupled
equations for body n and several momentum wheels as
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L B —

~T - T ~ | oaT I AT .
m + b} J 1 by + by sz b2| b Pw1 Jsl| by sz JS2 {U}n =

T ¢ | | "

s1 Twi b 1 Js1 I 0 &1

T - I 1 -
Jg2 Fya P2 I 0 I 92 L?Z
{G} + [b] —Z[b] [Q][J]{w}—Z[b] [J][b]{U}
__?m"“_+__________F _________
| 0 | 0

[II-109] + Z[b 1T (SK*{P }) [b ] {u} J 6
_ E}—:J_sl—l’wl [b1] {U}_ L .

T82 = Ja2 ‘_w%J [bz] {U}

The inertially coupled body-momentum wheel equations (for two
wheels) are shown as Equation II-109 simply for the purpose of
indicating the form. One may notice that within the equations,
there effectively resides the original form of the dynamic equi-
librium equations for body n, namely

[11-110)[m]_ {0} = (€} + [b]§ 3

which govern in the event that there are no momentum wheels asso-
ciated with body n. In Equation II-110 we have placed the caret
(~) over G to represent the right-hand side force vector exclud-
ing momentum wheel effects.

Now, on further study of the form of the Equations II-109, we
note that if the "locked” momentum wheel effects are already in-
cluded in the definition of [m]n (which is the standard practice

when inertially coupling systems together), then the (1, 1) par-
tition of the coefficients on the left of Equation II-109 becomes
simply [m]n. Also, the second column on the right of Equation

I1-139 is absorbed in {é}n, having already been accounted for in

development cf dynamic equilibrium equations.
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Thus, it follows that in order to implement momentum wheel cou-
pling with one of the flexible bodies, it is only necessary to
extend the {U}n vector to contain momentum wheel spin values

(8), to extend the inertia (except for the [1, 1] partition) as
indicated in Equation II-109 and to add to the right-hand side
force vector

™~ T . :
[11-111){c_ } = —%_,{bs] (sk*(e.1) [B.1 (U} 3, ).

— — — — — —— T Ga— — S— —

The values for shaft torque Ts that appear in {Gmw} are estab-

lished by a given control law, if the wheels are to be considered
variable speed. If a given momentum wheel is of constant speed
(used only for "gyroscopic damping") then the torque equation for
it is deleted from the form of Equation II-109; however, its
effects are still included in the upper partition of the vector
{Gmw} (the gyroscopic torque due to constant 8),

Clearly, the equations of dynamic equilibrium for a body, after
having been augmented to include momentum wheel coupling, are
still of the general form

= ~1 T
[m] ({G}j + [b]j {A}).

[11-112]{0} 3

3
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F. GRAVITY GRADIENT EFFECTS

Attitude dynamics of orbiting spacecraft can be significantly
influenced by the gravitational force that is distributed accord-
ing to the system's position and deformation state. The gravi-
tational force per unit mass varies (in a central force field)
simply because different mass particles are at different distances
from the earth's mass center, Figure II-5 describes the geometry
asgsociated with a typical elastic body.

_~ Typical Deformable Body

— Earth's Mass

Center
M

Figure II-5 Geometry for Gravity Effects on a Typical Body

For a central force field, the gravitational force per unit mass
is given as

m

[1I-113] (F) = - GM
1

H
I P

r2
i
which, to a first order approximation, is
=\ - 5 +7, -3e,fe, P, +T
[1I-114) (TE) B. [Tt oy 1 R{ R 04
1 R R
c c

i

where GM is the Earth's gravitational constant,
w, is the typical mass particle,
3 is local gravitational acceleration
Ek is a unit vector directed along i;

and ¢ is the origin of the body reference system.
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The virtual work due to gravitational force can be written as

W =E 'E) 6ty my
g m/,

i

[11-115] = j(f) . &T odV
‘m
\Y
with my replaced by differential mass cdV.

The virtual displacement field is expressed in terms of virtual
displacements of the quasi-coordinates as

[II-116] &% = 5?c + aé‘c x (Pg + ) + 7.

In combining Equation II-115 with Equation II-116, the torque
about point ¢, due to gravity gradient effects, is

— - = 38, _ =
[I1-117] (T ) =8, e X s + i:—-eR X (J . eR)
where S 1is the first mass moment about point c,

and 7 is the instantaneous inertia tensor (deformation dependent)
for the body.

The resultant force due to gravity effects is

(11-118) (3,) = s - Fe T+ Mef55) 5,
¢ g Rc Rc

and the force acting in the kth deformation coordinate, Ek’ is

— — 1 _— - —
(cgk) - - g j % * egodV + 32— J'¢k-(po+n)0dv
g c
v v
II-119 ® |- [ = =y eav!.
[ ] -3 R_ -I¢k [ER . (po + n)] o }
J ,
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Now, the unit vector Eﬁ has projections onto the body axis system

that continually vary as the body changes attitude. Let us express
the unit vector Eﬁ in terms of direction cosines and the three unit

vectors associlated with the body reference frame as
[1I-120] e = LeBJ J Yg}

and also define

[11-121] [;3] = SK* %Yg! ;

[1I-122] S = [Eﬁ] {S} ,

[1I-123] [é] = SK* {s} ,

[11-124] and {a} . {¢} L o4V,

With these definitions and the force and torque expressions of

Equations II-117, II-118, and II-119, it follows that the first

three elements of the contribution to the right-hand force vector,
e due to gravity effects are:

- 3g -
- ! - fy 1 - —= !
[1I-125] [Ggg L2 g, [s] gl X [Yé][J] :yg’ ,
the second three elements are

r+5°-(3syz 1o -m) sl ,
el TR\ s e (5|

[1I-126] G

]
88 4 5.6

Lt ]

{
!

and the force, due to gravity, acting in the kth deformation mode is

(b1), + (b2), + (b3)
- i & [ k k k +e £
%, T |y 1%« TR, 7 k3™

2
+ (1 - 2yg2) Ebg)k + (sz)kJEjJ
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+ (1 - 2Y§3) [(ba)k + (Caa)kjﬁj]
+ 2Yg1 Yo, [(b“)k + (Clz)kj g+ (C12) 5 &4 ]

+ 2Y81 Yga [(bs)k + (Cla)kj Ej + (C13)jk Ej]

[11-127] 2, Y, [(bs)k + (Cag)yy £y + (Caddy 53]

K Zm)kj’

(t,m= 1,2,3), are consistent with the development of Chapter II,
Section D and Appendix A.

where the inertia integrals (bn) , (n =1,2,-+6), and (C

e G. PROVISION FOR INCLUSION OF THERMAL ENVIRONMENTS

All problems associated with thermally-induced deflections have
in common the requirement of knowing the spacecraft’s attitude
relative to the sun to determine the effect of solar heating.
This required information can be extracted, at any point in time,
from the state vector, It is then necessary to have a model -of
the flexible structure's response, eilther static or dynamic, to
solar heating.

Considerable work has been done on modeling flexible appendages
in thermal environments* and the results indicate that the response

*For example, refer to:

1) Fixler, S. Z., "Effects of Solar Environment and Aerodynamic
Drag on Structural Booms in Space." J. Spacearaft, Vol 4, No.
3, March 1967,

2) Frisch, H. P., "Coupled Thermally-Induced Transverse Plus
Torsional Vibrations of a Thin-Walled Cylinder of Open Sections,"
NASA TR R-333, March 1970.

3) Goldman, R. L., "Influence of Thermal Distortion on the Anomalous
Behavior of a Gravity Gradient Satellite,'" AIAA Paper 74-922,
AIAA Mechanilcs and Control of Flight Conference, Anaheim, Calif-
ornia, August 1974,
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depends on the radiation properties of the booms and the attitude
relative to the sun.

The simulation program accounts for time-dependent thermal de-
formations in the following manner. It is assumed that a model
exists whereby the structural deformation of a flexible boom (or
appendage) resulting from solar heating can be determined from
elements of the state vector and time. This deformation is sub-
tracted from the actual deformation; the difference is premulti-
plied by the appendage stiffness matrix. The result is a vector
of modified, generalized restoring forces for the appendage, which
is summed into the {G}j vector for the appendage body.

In terms of the development in Sections II.B and II.D where
-[k]{g} is seen to be the generalized restoring forces (in the
deformation coordinates), we note that this is replaced with
-[k]({g} - {Ee}). The thermal deformation state {Ee} ‘is that

which must be established from a thermal deformation model.

In this way, a closed loop response analysis can be achieved

using external subroutines to develop the thermal deformations.
Some problems may require only open loop operation if the vari-
ations of {Ee} in time is slow with respect to general dynamic

response.
Rather than building in a rigid (or irrevocable) model of thermal
deformation, the dynamic simulation program provides the user

with an interface whereby he can formulate and code a particular
model, thus latitude with respect to user requirements is retained.
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III.

SYNTHESIS AND ANALYSIS OF THE LINEARIZED SYSTEM

— ——

Developments to this point have described the analytical tech-
niques used to synthesize the nonlinear characteristics of a
dynamical system consisting of an assembly of interconnected
flexible (or rigid) bodies. Particular emphasis has been placed
on spacecraft systems where individual bodies that comprise the
system may be spinning or nonspinning and may have large excur-
sions with respect to each other.

In this chapter we present a comprehensive summary of the tech-
niques developed for synthesis and analysis of the linearized
dynamic system with particular emphasis on frequency domain tech-
niques. For the purposes of this discussion it has been found

to be convenient to redefine the nature of the system under con-
gideration and to describe the techniques not in the sense of a
spacecraft system consisting of interconnected bodies that may

be subjected to a control system but rather to consider the total
dynamic system as a plant subject to a controller.

Linearization of the nonlinear state equations is necessary to
permit application of the powerful analytical techniques asso-
c¢iated with linear system stability synthesis. Whenever a non-
linear system can be reduced to a linear system in the vicinity
of a particular state of interest, it is much more desirable to
work with the linearized state equations. An additional feature
related to the linearized system permits the analyst to observe
linearized perturbation time response characteristics for the
system. The linearized time response can be quite easily auto-
mated by recursive formula, which are gensrally more efficient
than nonlinear numerical integration algorithms.
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[111-1]

[111-2]

{r11-3]

INTRODUCTORY DISCUSSION

The mainline nonlinear time domain analysis is structured to as-
semble a collection of interconnected bodies, including a control
law. The general form of the governing equations may be concisely
indicated as

¢ooplyte) 1=1,2, ...

and the form of the function F is the essence of the nonlinear
time domain solution. In fact, it can be stated that Equation
III-1 is the fundamental basis for the entire DISCOS program. Al-
gorithms for evaluating the nonlinear state vector time deriva-
tives (and auxiliary equations) are centered in a subprogram and
its supporting routines. These same functional algorithms are
used for linearizing the governing equations about a specified
state. In addition, it has been found desirable to introduce

some new variables including sensor signals, XSS, and control

torques, B. These new variables extend the number of equations
and these additional expressions are linearized along with the
basic state equations. Additional remarks concerning the use and
manipulation of the additional variables is deferred for a later
section. The remainder of this subsection will address specifics
relating to the linearization process. :

We first focus our attention on a single variable, §k’ and its

dependence on the system state, Yi, through a known (though pos-
sibly nonlinear) functional relationship. Arguments begin by

considering an initial system state, Yi(o), and a functional al-
gorithm with which to evaluate the expression, §k = %E-Yk. We
first express the unknown, §k’ in terms of a Taylor's series ex-

pansion about the given state, Yi(o) as

L a a§ ' az&
¥, = ¥ (@) +—?k ay? +——I;k_" ardayt + - - -
3y ayday

As our interest lies in the linear part only, the series is trun-
cated for all partial derivatives greater than one and we have

: 2y
- Yk(o) = .-.——ls de

j.
dy
BYj

yk = yk,j
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The task at hand then is to establish the partial derivatives
indicated as Vi §° thus yielding an expression of the form (for

all ¥t = vt Cvly, 1 =1, 2, - - )

trrr-4] oyt = u, | avd
i,j
Because it would be a nearly impossible {(certainly impractical)
task to generalize determination of the partial derivatives as
expli¢it analytical expressions invelving the independent state
variables, we have adopted a numerical approach. This task is
accomplished by employing numerical perturbation techniques in
conjunction with quadratic functions to establish the desired
partial derivatives. Symbolically, we seek to determine the
elements of H, such that
i,]
i

2l od j
[III-5] Y Y' (o) + Hi‘j AY

where it is assumed that

1) The functions, Yi, are indeed linear sufficlently near the

state, Yi(o)

2) The functions, &i, (although possibly nonlinear) can be rep-
resented as a quadratic (or lower order) in the neighborhood

of Yi(o).
The basic approach 1s concisely summarized in two steps:

1) Establish quadratic coefficients for ?i in the vicinity of
the state, Yi(o)

2) Evaluate the partial derivatives H at the state, Yi(o),

i3
using the quadratic coefficients and perturbation values on
the independent variables.

B. THE LINEARIZATION PROCESS

With reference to Figure III-1, the quadratic formula can be stated
in matrix form as

[III-6] £(n) = [32 n {] 2
£

II1-3



b

(q)
f(i+2) P(i+2)
|
P
, (i+1

i » f(i+1) J— !
T(4) |
! | !
i | |

Y1) Y(i+1) Ti+2)

Figure III-1 The Quadratic Formula

where n is a local spacial coordinate with origin corresponding
3

to q(i) and it is desired to establish the derivative, 35, eval-

uated at q(i).

In general, the required paftial derivative is

- 2f 2an
an

3
q

(111-7] 7o

The three values, f(i)’ f(i+1)’ f(i+z)’ are evaluated via the

previously discussed functional algorithm, thus these values do
in fact satisfy Equation III-6. More specifically, consider

2
fi ﬂ% ﬂi 1 d

[1T1-8] £y, 0 = ”21+; Ni+1 e
s “i4n | M2 |t

and by matrix manipulation it follows that

-1

nzi ng 1 £
I 2
[I11-9] £(n) b n %l 14 U 1 fi+1
2
n i+2 Ni42 1 fi+2

where the local coordinate, n, is defined to be

111-4




[III-10]

[III-11]

[11I-12]

[ITI~-13]

[II1-14]

[III-15]

[I1I-16]

[I11-17]

a-aq

n=

U4z

and it can be noted that

an 1
n = O; n = 1; —_— ~ .
i i+2 aq 9y qi
It then follows that
-1
02 0 1 fi
= 2
E(n) lP nf 2 ng 1| Jey
1 11 i+2
and if we specify Niyyp = 1/2 and note that f(i) = f(n=i)
we have
o -
o L (£
gm) = [?n1] |14 121 £1/2)bs
[l 11 f(1)
2 - 2
) 4 Fo
e = o2 n 1] =304l
1 0 0 f
(1)
2 -4 2 f(o)
£7(n) = l_2n 1 OJ -3 4 -1 f(1/2) s
1 0 0 f(l)
and, in particular,
f = £' (n=0) =
Tl PO R
and
9f e
—_— = f' q:q. =
aq l(o) q ( 1) Q(i+2) = Q(i)
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[II1-18] Ayl = H

Comments

Selection of an initial perturbation value, q(i+2), from an ini-
tial specified state, q(o) = Yk(o), is somewhat arbitrary. A

value of 17 of the initial value has been successfully used for
all example problems during the course of the study. In the case
where the initial value is null, an infinitesimal value must be
chosen. A value of 1x10~> has been accommodated in the digital
code. The intermediate choice of n(i+l) = 1/2 was selected for
other reasons. Consider first that a single evaluation of a
)
partial derivative —£I is not sufficlent to qualify its validity.
9y
We have employed an approach whereby two successive evaluations

of Bf/BYi obtained by successively cutting the perturbation in
half must agree to a predetermined number of significant digits
(e.g., 5). The choice of n(i+l) = 1/2 requires but a single new

evaluation for each element in Qi at each successive reduction
in the perturbation value. In summary, the linearization em-
ploys an iterative technique to establish the desired partial

derivatives.

System Resonance Properties

The linearization process has provided a system of first order
differential equations that describe the dynamical simulation

in terms of perturbation variables about an equilibrium state.
The linearized canonical form appears as

h = ..
1’jAY (i’ j 1’ 2’ )

The coefficients Hi jcontain all of the resonance frequency
»

properties of the dynamical system. The standard eigensolu-
tion form is indicated by taking the transform of this expres-

sion

[I11-19] (513 s -H, j)mzj(s) = 0.

Extraction of the roots (eigenvalues) from Hi jt:hen gives the
’

roots of the dynamical system. There will be N of these roots
and any complex roots will appear as conjugate pairs because the

elements of Hi jare all real. The imaginary part of the complex
. )
pairs represents the resonance (or characteristic) frequencies

of the system.
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[II1-20]

[T11-21])

[I11-22]

[1I1-23]

[I11-24]

EXCHANGE OF VARIABLES

It is often necessary for the analyst to require additional
variables with which to assess the stability characteristics
of the dynamical system. These additional variables ordinar-
ily take the form of plant sensor signals and control system
output forces and torques. Although the desired variables
may not be explicitly contained in the system state vector,

Yi, they are known in terms of the state variables through an

expression of the form

o - i),

Recall also from previous discussions that either directly or
through linearization we have established

Now rewriting Equation III-20 in matrix form and identifying
variables to retain, Yj, and variables to eliminate, Y,, gives

1
{w} = [C”Cg] Y
i Y,
and it can readily be established that

{x} = [’] {z¢

where
1 {0
S vt o
=C2 "Cy €2
and

Thus, the state equations for the dynamical system can be
written (in terms of variables that include the desired plant
sensor signals and control system forces and torques) as

fah = (907 [ 5] (0 g2
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[1I1-25]

and the transformation A, 6 = R~ H R, is commonly referred

ij i,]

to as a similarity transformation. The matrix Aij is said to

be the transform of H by the matrix R.*

1,3

The simllarity transformation Aij possesses a unique property
in that the eigenvalues of A, , are equal to the eigenvalues

of H

1]
{ j! A simple proof establishes this point.
» .

Proof:

The characteristic matrix of A,, is given by

i]
A,, -sI\= (R"1H, , R-sI)=rRr"' (H ,-sI)R

(Agg - sT)= (R H ) (T,5 - o)

It follows that Q(s), the characteristic polynomial of Aij’ is

Q(s) = det (A - sI) = det R—l(det (Hi j - sl)) det R

i3

-1 1
and as (det R = der (D it is apparent that
Q(s) = det (Hi,j - SI) = P(s)

where P(s) is the characteristic polynomial of Hi j' Thus it
4

i{s evident that the matrices H

and Ai have the same char-
acteristic equations

1,3 3

Q(s) = P(s) =0

and therefore, the eigenvalues of Ai are equal to the eigen-
values of Hi j° 3
3

Application of this property now permits isolation of the plant
and controller, even for a state space representation of an in-
herently nonlinear system that can be linearized about a spec-

ified state. Separation of plant and control system variables

is an important facet of linear system stability synthesis.

%3, Hovanessian and L. A. Pipes: Digital Computer Methods in
Engineering, McGraw-Hill Book Company, New York, 1969.
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1. Evaluation of the Similarity Transformation

This discussion relates to a procedural approach for determi-
nation of the similarity transformation matrix, [R], that will
relieve the user from the burden of having to select those
variables to eliminate from the original state vector such that

the auxiliary variables, Bi and Xssi, can become an independent

constituent of the modified state vector for use in the lin-
earized studies. With reference to Equation III-22, all of
the Cij coefficients are known as they have been obtained

=re through linearization of the auxiliary equations. The Cij co-
efficients simply define the dependence of the auxiliary vari-

ables, wj, on the original state variables, Yi. In general,
it is not possible to directly partition the Cij in the C; and

C, partitions as indicated in Equation III-22, for we have yet
not made the decision as to which state variables to retain
and which ones to discard in preference to introduction of the

auxiliary variables, wJ. In this light we would like to make
a best possible choice with regard to which of the variables

to eliminate from the state vector, Yi, such that the auxili-
ary variables, wj, may be 1ncluded. Many times there will be
a one to one variable exchange between an element of wj and an

element of Yi. In any case a variable exchange 1s necessary

to structure the total system into the desired plant/controller
framework whereby the plant and controller can be isolated
along with the plant sensor signals and the control system in-
puts.

The following approach is employed in this simulation to ac-
complish the desired result; namely, an optimum selection

from Yi as to which variables to eliminate such that wj can be
introduced as a part of the state vector. With reference to
Equation III-22 we can write

[1T1-26] [c E—I] {:ji;= {o}.

Our primary focus of attention is now directed to a systematic
examination of the C coefficients such that the variable ex-

i3
change is accomplished in an optimum manner. We will first -
make note of some size identifications to help clarify the

discussion.
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[111-27]

Cij has size NR by NS

Y:L has size NS by 1
w) has size NR by 1

and
NJQ = NS + NR.

Clearly, there exists at least one nonzero element in each row
of the Cij array. Otherwise Yi does not represent an indepen-
dent set.

Now a search through the first NS elements of row 1 in the
matrix array

4]

will identify the largest element (absolute value) in row 1.
Assuming that this element occurs in columm JBIG (1 < JBIG £ NS)
allows us to divide each element of row 1 by this largest
element and subsequent elementary row operations on rows 1
through NR will eliminate those elements below the pivotal
element in column JBIG.

This procedure is repeated for each of the NR rows contained
in the matrix and the following observations are noted;

1) the appearance of a one (1.0) in a row identifies a vari-
able that will be eliminated in preference to inclusion

b

of an element of w .

2) The absence of a zero or one in columns of a given row
indicates which variables will survive the exchange process,

3) All variables in wJ (NR of them) will become part of a new
and independent state vector (the modified state vector).
4) The transformation, Rij (4,3=1. . . NS) can be con-

structed from the matrix that remains after the procedural
approach has exhausted all of the NR rows of the expression
I11-27.

Illustrative Example

A simple example is presented to further describe the actual
mechanics used for evaluation of the similarity transformation.
Linearization of the auxiliary equations has established
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and to implement the proposed algorithm, we first write down

the C matrix augmented with ~I and further identify the elements
N8 1.2, _|b1ib12bisbiy
[C |-I] b21b22b23boy

of C as
-1 ]
|

For illustrative purposes assume that ’blal > l(bll, bi2, blq)l
and hence bj3 is the pivotal element for the first row. It
follows then that row 2 is modified by the relation

elezj = —b23 * bl
bys
giving the matrix

j + sz

b1 bi2 byy 1
1 -—10
%13 %13 ~b13 |” B13
b bio by
-b23 | P23 §{ ~b23 ¢
13 13 | o 13 b,y | -1
+b21 +b22 +boy bys |

[211 l C12 | 1 i C1y | C1s I 0-]
[521 €22 I 0 €25 l—l_J

We continue the process by first dividing row 2 by the largest
element and again using row operations to eliminate the other

element in that column. Again, for illustrative purposes, we

will assume we know the pivotal element of row 2 (say cjy;) and
row 1 will be modified as follows by row operations

Cay

elelj = —-cyp * czj + clj

Ca2

giving
-cy2 %Zl o | 1| —c12 %Z& -c1> %Zi ci12
+c)) 22 +cyy 22 +C5 22

d,, = :

ij c21 L Coy €25
€22 €22 €22

[511 l 0 l 1 | dyy I dis | dig
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from which we establish the desired similarity transformation as

1 0 0 0

R = |~d21 |—das} -d2s ~-dag

i
J ~dyy | ~dis]| -dis |-d1s

0 1 0 0

Now it follows that the original state variables are written in
terms of the modified state variables as

Y 1 0 0 0 | {1
Y ~-d2y | =daw | =d2s | -d2¢| JYu
Y3 = ~-dyy | -dis | =dis]-dye| }¥i{ °
Yu 0 1 0 0 Wy
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SYSTEM TRANSFER FUNCTIONS

The entire system transfer function synthesis can be concisely
summarized in a chronological sequence of steps that began with
linearization of the coupled mechanical/control law equations
that govern the dynamical motion.  This process included linear-
ization of additional equations that contained specific variables
required for further consideration in-the-stability analysis;
namely, plant sensor signals and control-system ocutputs. A
similarity transformation has been introduced which in effect,
exchanges original state variables for these desired sensor sig-
nals and controller outputs such that the resulting modified
state vector still is representative of an independent set of
state variables. The resulting system of state space equations
is later identified as Equation I1I11-28.

The system characteristic matrix, Aij; provides the basis for

evaluating the coupled mechanical/control system resonant char-
acteristics (natural frequencies) as well as providing the fun-
damental basis for specification and determination of the various
types of transfer functions. -The next subsection addresses some
of the more specific details regarding specific transfer function
relationships. A particular transfer function is identified by

a type along with the desired output/input variable designa-
tion. An eigenvalue problem is then stated, which leads to
determination of the numerator roots (zeros) and denominator
roots (poles) for the particular transfer function. Once the
poles and zeros are known for a transfer function, this infor-
mation can be further processed and displayed by any of the
conventional display modes: Bode, Nichols, Nyquist, and/or

root locus.
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The conventional block diagram representation for the coupled
plant/controller system (Figure I1I-2) provides additional in-
sight for determination of system transfer functions.

{RT} =@ »{ Plant ~[G] >

Controller ~ [H] ’—-@_ {Rs}

Figure IIT-2 Plant/Controller Block Diagram

The first-order differential equations for the system are written
as

[111-28] 71 = Ay 23+ B, RTj + By st
i3 i]
and it is helpful at this point to express the equation in ma-

si
trix form and indicate the separate partitioned subsets of 27,

h] j 4R h|
Aij’ z, BTij, RT , Bsij an s as

y fa11 | a12 |a13 |3a1s] (¥ b1 b1
[III-29] fss = |321 ] 222 |az23 |32y LAt b2 {RT} +1b.2 {Rs} .

§ a3y [a32 233 j234] )6 b3 b3

B ay) | au2 | au3 |auy B Do bou

The following observations are noted;

azy =V by =-ayy b1 =0
ay; = 0 bpp = -azy by =0
aj3 = 0 bz =0 b3 = a3
azz3 =9 by =0 b y = au2
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and Equation III-29 can be restated as

y ENR T aiv] (v -aly 0
[III-30] }.(SS = taj] |aze asy XSS + |-azy {RT} +|0 {RS}'
— 8 a3z {azz ja3y 8 0] ajs
— B ! ay2 |au3 [ayy| \B o ay2

Equations III-30 are the operating basis for stating particular
transfer function relationships for the plant/controller system,

The general procedure is to establish a system transfer function
between inputs RT and Rs and outputs Xss and B. Loops may be

opened to provide open loop information by manipulation of the
Aij coefficients to prohibit certain feedbacks.

To symbolically describe specification of a transfer function

we begin by consolidating the b coefficients and taking the La-
place transform of Equation III-30 to give

[ITI-31] [Is] {z(s)} - [A] {z(s)} + [b) {U(s)}

or

s ] - [A]] feot = ] freo)

and then employ Cramer's Rule to evaluate a given element Z(s)

P

due to a particular input U(s)q where

p/U q _ aug| Is - Al

[ITII-33] Z(s (s)

)
I Is - A|

and where aug [Is - AI is accomplished by placing column q of b
into colummn p OfIIs - AI.

*
The Q-R algorithm is a useful tool with which to extract the
indicated determinants in Equation III-33.

*

J. G. F, Francis, "The QR-Transformatlon — A Unitary Analogue

to the LR-Transformation." The Computer Journal, Volume 4, Octo-
ber 1961 (Part 1) and Volume 5, January 1962 (Part 2).
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1. The Root Extraction Process

With reference to Equation III-33 it is desired to evaluate both

the numerator and denominator roots. The denominator root extrac-—
B tion is straightforward in that we wish to find p1, P2» P3, *** P
. from an expression of the form n

D(s) = det([I]s - [A])

guch that

n
[III-34] D(s) = (s = p1) (s = p2) *** (s - p) = T (s-p).
i=1

This evaluation is completed by extracting the characteristic
roots of the matrix Aij' In general these roots will be complex
iﬁ,w; because Aij is not symmetric.

The process employed for evaluating the numerator is best illus-

trated with an example. Consider that we have the (4x4) charac-
teristic system matrix,

[Aij] = [ay; | a12 | 313 |a1s)

az) | 222 ]| @23 |32y

23] | 332|433 |33y

Laul ayz | ay3 |24y

and the column of coefficients bi which premultiply the desired

I input variable ud. Further, let it be desired to obtain the
transfer function relating output of the third variable in the

state equations y3 to the input Uq.

The state equations for this system would appear as

Y1 ray] |a12 | a13 |awe] (N1 b)

[111-35]1 Jy2\ =] az; [222 [ @23 fazy|)y2l + )02 vl

Y3 a3y |a32 |a33 |a3u|fy3 b3

yu L3241 | 3u2 | 343 | 3unu ] \Vy by,
and, with reference to Equation III-33, the numerator is

N(s) = augl|Is - A| or
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s -aj | -ay2 by | -a1y

-ap) $ —agy | b2 | -apy
[III-36] N(s) = det -aj3] -aj3p b3 | —a3y .

-ay1 | -ay2 | by |s -ayy

After performing elementary row operations, Equation IIX-36 can
be restated in the form
s -aj] + a3) b)/b3| -ayp + a3y by/b3| -ayy + a3y by/b3
[TII-37] N(s) = bzdet | -ap; +a3) ba/by  |s-azatasaba/bs |-azy +a3y ba/bs
-a,) +az; by/bs -ayo +a3p by/bs s—anut+assby/bj

or, in symbolic terms as
[111-33] §(s) = b3 det|[Is] - [a]]

where the matrix 3 is given as

r- .
a1] ~a3) bi/bs |ajz -a3z by/bz a1y ~a3y b1/b3

az) -a3] ba/b3 |apy —a3zp ba/bz |apy —azy ba/bjs

ay) -az) by/bz layy =a3zz by/bz |ayy -azy bu/b3J
Note that the previous expression for N s) is finite only if b3 # 0
and the question is--can b3 realistically be null? The answer is
yes as the following example indicates.

Example

Consider the simple mechanical system consisting of two masses
connected by a single spring/dashpot combination as shown in the

sketch.
— X K = X
F, AV
—_— my H w2 —»-F»
—_— ) C

The state space representation is
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d (% —c/mp | e/m;  |-k/m; | k/m Xy 1/my 0} (Fy
d RZ = | c/m; -c/mp |k/mp ~k/my kz +10 1/m2 {fzi
.S} U 1 X 0 0
X2 1 X, 0 0

and the frequency domain (or transformed) equations in s are

[[I]s - [A]] X)) =|m o0 {m}

Xa(s) 0 1/m, ||F,
X1 (s) 0 0
Xo(s) 0 0

where

(a] =|-c/m; c/m;  -k/m; k/m
c/mp; =-c/mp k/mp ~k/m2
1 0 J 0
0 1 0 0]

Consider now the transfer function X, (s) /F1 where the augmented
numerator is

N(s) = det l/my —-c/m k/m; —k/my

0 g + c/my =k/my k/m,
— 0o 0 8 0
-1 0 s

and the pivot element 1is the (1, 1) element or 1/m1 ?&Or On the
other hand, the transfer function Xl(s)/Fl has the augmented

numerator

N(s) = det | s + c/my =c/m 1/mp -k/m
~c/my s +c/my O k/my
-1 0 0 4]
0 -1 0 s

and the pivot element is the (3, 3) element, which is null,
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The problem we now address involves evaluation of the numerator
determinant N(s) when the pivotal element is null., The particu-
lar mathematical problem may be restated as

[2): - [3

[I]is the identity matrix [I] of size N with a null diagonal
element.

[III-39] Ns) = det

where

Addition and subtraction of the quantity [i]x where ¥ 1s an ar-
bitrary constant not equal to one of the roots of [&]) yields

1] -0 - [[{- [ 4]

and if we define (s - ¥) 1/p, there results

[III-40] N(s) = det

I

- =1 ~

A - ix det| 1p - (A - Ix) I

[111-41] §(s) = (~1)" det
N

Tne roots, (pi, i=l,N) are found as the eigenvalues of the ex-
pression

e [[i] - (7] [

and tiae eigensolution permits N{s) to be written as

[III-43] N(s) = (-I)N det {(P - p1) (p = p2) **° (P - PN): .
N
P

A - Iy

We now make the following observation: a Py equal to zero im~
plies a root at infinity (or a characteristic polynominal having
order less than N). Thus, the null pi's are eliminated from the

expression giving tne characteristic polyminal an order n, which
is less than N. It is a rather common occurence for the number

of zeros (order of N(s) ) to be significantly less than the num-—
ber of poles (order of D(s) ). With reference to Equation III-

43, the numerator éexpression, N(s) can be written as
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[111-44] H(s) = -1V det

———

P p )%

A-ix{ a-2ya-P2y.eea-Pa

and, recalling that p = E%;, yields

[111-45] N{s) = =l detl A - Iy
[“I (x - si)
i=1

(s'- s1) (s = sp) *** (s - Snj .

Next, we note that

[111-46] [] y - (=
YRRy 1T
igl e\ P

and it follows thét

N-n 2
I Py det
i=1

[II1I-47] N(s) = (-1) A-Ix| oG- 5,0

i=1

The numerator rgot gain, kR’ can now be identified as
¥-n J] p, det A - ixl
11-48] k, = (-1)°
(I 48} R (-1) i=1 i

and the Bode gain, kB’ for the numerator is

m
= 1" L
kB kR (GO s § s, where m & n.
i=1
2. Transfer Function Classification

With reference to Figure III-2 it is possible to directly iden—
tify six transfer function types. Each type is characterized by
the specific variables involved and by the presence of feedback.
Additionally, a seventh type will also be described whereby cer-
tain of the control variables feed back and others do not. This
type is similar to an open loop transfer function but treats se-
lected channels of the controller as part of the mechanical sys-
tem (plant). During the course of this discussion it will be~
come apparent that additional transfer function types are easily
accommodated by rather simple manipultaions with the system char-

acteristic matrix, A

i3
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In general it should be noted that the process of obtaining the
desired transfer function involves but a few basic steps. The
transfer function characteristic matrix, ﬂ?ij, and the desired

force coefficient vector, bi are obtained directly from the sys-
tem characteristic matrix Aij‘ These two matrices are then put
in a form such that the Q-R algorithm can be employed to extract
system roots.

Type I (Plant Only)

Type I is the forward path transfer function for the plant with
no feedback and is of the form

[III-49] XSE/R% = G(s).

The control variables Gi and control outputs, Bi, do not feed
back into the plant. The matrix expression depicting the system
of interest is

[111-50] d_(y ) = [a11 a12] [y )+ [bp {RT} .
dt XSS as] asp XSS sz

The matrix, Aij’ to use in the general expression given as Equa-

tion III-33 1is referred to as "Qij or the reduced Aij matrix,

[III-51] H?ij - [all al%]'

a1 az2

The augmentedﬂzij matrix is obtained by removing the column cor-
responding to the input variable, Rg, from the expression bT and
inserting this column into the column in Rij’ which corresponds
to the desired output, st. The resulting transfer function is
then given as
[rr1-52] x P/rd - aug [1s - RI .
|22 - R|
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Type I1 (Controller Only)

Type II represents the feedback path, H(s), for the controller
only. The desired transfer function relates control system out—

puts Bi to sensor signal inputs, xJ

ss’

[111-53] B°/x 3 = H(s).

The reduced characteristic matrix “21j and the corresponding in-

put coefficients, bik’ are given as

“Qij = [a33 agy|* by =fa32 | .
[111I-54]
ay3 ayy ay2

Type III (Open Loop, GH)

Type III falls within the framework of the classical open-loop
transfer function designation and relates control system out-

puts Bi to external plant inputs R%. The algebraic expression for
a given output variable, Bp, due to an external input, R%, is in-
dicated as
-3 P q-
[111-55] B"/R, {GH)(S).
The open—-loop system characteristic matrix Ilij and corresponding

input coefficiencts, bik’ are

lRij =1 a111]312 ’ bik = {~aly .
a a -a
[111-56] 21 | a22 24
azp [a33 | au3 0
ayp | ay3 | auy 0

Previously it was noted that a3; = ay] = 333 = 323 © 0 and, in ad-
dition, the partitions ajy and azy are set to zero to prohibit

~ the B1 feedback. Thus, the loop is opened to establish GH, the
open-loop transfer function in s. Note that the negative sign
in the bik coefficients simply indicates that the Bi feedback is
negative with respect to the external plant inputs, R%.

III-22




Type IV (Open Loop, HG)

An additional open-loop transfer function is often desired to
assess the plant sensor signal outputs due to controller noise in-
puts. The transfer function then relates sensor signal outputs,

X:S, to control system noise inputs, Ri . The plant sensor sig-

nal vector does not feed back into the system so that we have

Pl .
[ITI-57] X__ /R, (HG)(s)

and the system characteristic matrix, "Qij’ and the external in-

put coefficients, b,,, are identified as

ik
lRij =lay11 |a12 alﬂ s bik =10 .
[III-58] az) |azz2 azy 0
azz a3y az2
ay3 {ayy ay2

Note that the a3; and ay, partitions have been nulled to elimi-
nate sensor gignal feedback.

Type V (Closed Loop - Control Ratio)

The system control ratio 1s given as the transfer function that
relates plant variable outputs to externally applied plant inputs
with the control system entirely active. We express thils transfer
function as

P/,n4
[111-59] X__/R; = ( G ) .
. 1+GH /(s)

and the system characteristic matrix "21 and the external input

3

coefficients bi are identified as

k
"?ij =la11|a12 a1y ; b =| —aiu]|
a a a -a
[III-60] 21| 322 24 24
azp faz3z| asy 0
342 | 343 | Buy 0

The negative sign in the matrix bi indicates that the feedback is

, . k
negative,
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Type VI (Closed Loop)

An additional closed—-loop transfer function has been accommodated
within the digital simulation. Specifically, Type VI relates
plant sensor signal ocutputs to sensor signal noilse inputs with
all control gystem loops active. The transfer function is sym-
bolically indicated as:

[III-61] st = (transfer function) R:

where the system characteristic matrix, E?ij, and corresponding

input coefficients are identified as

lRij = ja11 alz aiy | » bik =10 .
a a a 0
[II1-62] 21 22 24
432 az3 azy a32
‘ ay2 au3 ayy ay2

Type VII (Quasi-Open Loop)

An additional transfer function type 1s identified here and re-
ferred to as quasi-open loop. It is of the open loop type in

i
that we are interested in control system outputs, B, due to plant

variable inputs, R%,
control system (such as azimuth and elevation), we desire outputs

For example, suppose that for a multi-channel

Bi on the controller channel that do not feed back and that the
other channel 1s active in that it feeds back into the plant.

[P

Plant -
|21}
: Channel 1 {xss}
l Ba ‘ - Channel 2 S a——

For the configuration indicated, a typical Type VII transfer func-
tion (TF) would be given by

p

Bs d

= (transfer function) RT
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b and the form of the system characteristic matrix, ﬂ?ij, and plant
S input coefficient matrix b would be

"Qij = |la11 |a12 flu s by =21y |-
az) |az2 ap -azy
[I1I-63] 24
agzz |az3 | a3y 0
ay2 (a3 [duy | I

The subpartitions a;, and 3p4 indicate modification of the origi-
nal partitions ajy and ajsy,. Specifically, imm is a subset of aij

obtained by keeping only those n columns of a . that correspond

to the Bi varlables that feed back to the plant.

3. Transfer Functions — Polynominal Description

This subsection is addressed to implementation of control system
transfer functions described as the ratio of two polynominals in
the frequency domain, s. Specifically, we consider

[I1I-64] TF = P(s)/Q(s)
where

Q(s) = ap + a;s + 3282 + a3s3 + sve + ::),nsrl

and
P(s) = bg + bys + bas? + +e0 + b 5",

Because the previously described governing equations have been
stated in canonical first-order form, we propose to restate the
polynominal description for the transfer function in the form

-65] §& = 3
[111-65] §° = A, & + B,U

The block diagram for the system is

U ‘ P!sz )

Q(s)

[I1I-66] from which we write

5 = P!s! U

Q(s)
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and expansion of the implied operator in s results in a differ-
ential equation of the form

m-1

n B . m
[I1I-67] a_ 8 +a ;6§ +e+e+a; d+agd=Db U+b U + o0 +b U+ bgU
wnere % = a"% .
dt™

In general, the order of P(s) will be no greater than the order of
Q(s) or mgn.

a., m=n

We divide Equation III-67 by a_ to obtailn

... n n-1 . m m-1 .
[I1I-63] § + Cn_1 8 + eoe + C; § + Cpd = dm U+ dm—l U + es0 + 41U + dgU
a b
i i
where Ci - = and di A
n n

An example will be used for illustration.
Example: Consider the equation with m=n=4,

) sas se .

§ +C3 6 +Cp 6 +Cy8+Co8 =dy U +ds U +d0" +dU+dgu

or, in operator form

s¥6 + 83 C36 + 82 €6 + C1s8 + Cp8 = s"dyU + s3d3U + s2d,U + s d U + doU.

This can be rewritten as

s“(s - dU) + 53(C36 - dgu) + s?(c26 - daU ) + s(C16 - qu)+ (cos - dou)= 0.

and the substitution
§; = 8 - dyU
permits a reduction in order to
s3(8; + c38 - d3u) + s2(c26 - dau) + s(ci6 - ayv) + (Co8 - dqu) = 0.
we can again introduce a new variable

§y = (31 + C38 - d3U)
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Dlih

and rewrite the previous as

s2(8, + C28 - daU) + s(c18 - aru) + (cos - dov) = 0.
It follows that if we define

83 = 32 + C26 = dyU

there results

8(33 + C;8 - dIU) + Cgé = doU = 0,

and the substitution
§y = 83 + €18 - 41U
gives

8, = —Cgo8 + dgU.

The variable & can now be eliminated from each of the above ex-

. . th .
pressions and the results generalized to n order systems,

The result is concisely stated as a matrix equation that is recog-
nized to be of the desired form initially given as Equation III-63,

7. ) ~ 7 0 - = U
8 -C__; ol+|-]0o{[e1 do1 = Cuady
8, =C oL || ]]|s2 d _,=C _od

01 S E 8 4 O

-1 -C; 1 6!1-1 d; - Cldn
n -Cp Qo]0 5n dg - Codn J
\ ~ - -\ .

where &, and &, the original variable of the equation, are rela-
ted as shown previously and U is the input variable to the trans-
fer function expression as indicated in Equation III-65,

b, m<n

The general expression for the case where m<n is easily accomo-
dated by restricting the di coefficients to reflect the limit m.

Commonly, only the dg coefficient will be finite.
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[1I11-70] TF = ky

Frequency Response

Transfer function poles, zeros, and root gain can be converted to
the standard Bode form for frequency response by combining time
constants, damping, and resonant frequencies as

srﬁ(l-i-'rs) FIZ(1+2cis 32)
w

{=1 1%) {=1 +—
w

i i

M1 M2
o (1+ s\ 2z,s 82
j=l( J)jr_'l 1+_._j_.+__
w w2
J A
where the Bode gain is
n
T2
i=1
k. =k where k = root gain and
B m
Inr
i=1
T = system constants
= system damping at frequency w

w = system resonant frequency.

The frequency response is then calculated by substituting juw for.
s and evaluating the transfer function expression at various wls,
The digital simulation uses a vernier frequency incrementing ap—-
proach that automatically introduces smaller frequency increments
near the poles and zeros. This variable frequency incrementing
technique permits better transfer function resolution near the
resonances where amplitude and phase can vary rapidly.

Root Locus

The root locus method of analysis and design is based on the re-
lationship between the poles and zeros of the closed loop transfer
function and those of the open loop transfer function. The method
is used to determine the location of the roots of the character-
istic equation as a function of a single open loop gain param-
eter. The locations of these roots are indicative of the relative
system stability. The analyst may use the method as a design tool
by adjusting the poles and zeros and the open-loop gain parameters
in such a way as to yield a closed loop system with satisfactory
critical frequencies (poles and Zeros) .,
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To further describe the theoretical basis for the method we re-

fer to the conventional control ratio for a feedback system as
shown in Figure III-3.

R(s)

Q
—
4]
~——

G(s)

Y

H(s)

Figure III-3 Conventional Feedback Control System
The control ratio C(s)/R(s) is

[111-71] cfs) . c(s)
R(s) 1+ G(s) H(s)

and tne open loop transfer function G(s) H(s) is identified as
a ratio of two functions in s,

[11I-72) G(s) H(s) = kg,((_s_)l )
Qs

The characteristic system equation is

[III-73] 1 + G(s) H(s) =0

or
e 2l

Q(s)

The conventional root locus plot portrays the locl of the values
of s that satisfy the characteristic equation as k varies from
zero to infinity and we note

1) at k=0, the roots of the characteristic equation are equal to

the roots of Qés), which are the same as the poles of the open
loop transfer function, k Pis 3

Q(s)
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2) as k approaches infinity, the roots approach the roots of P(s),
the open loop zeros.

Thus, as k varies from O to infinity, the loci of the closed loop
poles migrate from the open loop poles to the open loop zeros

and the direction of migration depends on the sign of the open
loop gain parameter, k.

Rewritting Equation III-73 yields a more conventional expression
for the characteristic equation as

[111-74] k B(s) _ _;

Q(s)
and two conditions are required;
k p(s)
Q(s)
2)@/(}(5) = 130°, k>0 .

1) - L

The first of these conditions can be expressed as
Q(s)
P(s)

=

for those values of s that satisfy the angle criterion. The con-
ditions that govern the migration of the roots in the complex
plane can be solved by an iterative procedure. The iterative
procedure for evaluation of a single root locus* is described in
Appendix E.

LINEAR TIME DOMAIN RESPONSE

The linearized canonical first-order system of equations can also
provide a basis for studying system time history in terms of per-
turbations about a specified state when the system indeed behaves

*

Welch, Raymond V., National Aeronautics and Space Administration
Goddard Space Flight Center, Branch Report No. 254, October 2,
1973,
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in a linear manner in the vicinity of the state. The nonhomogen—
eous form of the equations was the basis for determination of
system transfer functions and appeared previously as

Uk(t).

(rrr-751 2% = a,, 23 + b,

13 k

The external system inputs are the elements of Uk. It is con-
venient to establish the solution for the above system through
use of a recursive formula numerical Integration procedure rather
than through the Runge-Kutta approach.

Consider the Adams' corrector formula* at time t+l,
[III-76] Nt = Mg + %ZT [9 Net1 + 19 N, - 5 N1 + nt_z]

where h is the incremented time step.

Application of this formula to our system of equations gives
i S S <N 3 k o S ! i
Tt [9 Ayy 2oy T 9Py Ve P19 20— 3 29 2

i

and manipulation yields the solution for all the z~ at time step,

t+l

H s [[I] - 'g'll [A]]_l Ht + 'tilZ (9 [b] {u}tﬂ + 19 ;%ft - SHt—l +

E t_z)} :

.i .
Hote the requirement for z~ at time step t-2; hence, the require-
ment for a starter (e.g., Runge-Kutta) to initiate the solution
process,

*
F. Schied. "Theory and Problems of Numerical Analysis." Schawn's
Outline Series, McGraw-Hill Book Company, New York 1963.
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[A-1]

[a-2]

[a-3]

[A-4]

.[A-Sl

APPENDIX A--DEVELOPMENT OF THE INERTIAL INTEGRALS

. In the development of the equations of motion (Refer to Chapter

II, Sections B and D.) there are certain inertial integrals
identified that are required to account for the deformation-depen-
dent inertia matrix and that are involved in calculating the ef-
fects of centrifugal and Coriolis forces.

The basis for calculating these integrals is a triple matrix pro-
duct involving a so-called discrete mass matrix [M], which is as-
sembled by use of finite element techniques, and which may be used
in calculation of vibration modes. The other constituent of the
triple matrix product is a modal transformation that transforms
ordinary velocities, associated with the finite element model, to
the velocities of the {U}, vector.

3

Let us refer to the transformation as [¢], thus the triple matrix
product 1s

T
[m] = [¢]1 [M][s],
which is the basis of the kinetic energy expression of Equation
II-21. Now, the mass matrix [M] is invariable with respect to

the body's deformation. The modal transformation [¢] does, how~
ever, depend on the {£} in a linear fashion, or we may expand

[¢] as
(6] = [¢]  + [a¢],

with [¢]o a matrix of constant elements and [A¢] variable with

respect to deformation.

On substituting Equation A-2 into Equation A-1 and referring to
Equation II-86 it follows that

T
[m,] = [o,17 M1 s,1,
[mi); &5 = (401 100, 1 + [o,1T M1 000,
and

[m2] 3 €35, = (2617 [(M][a6] .



[A-6]

[A-7]

Assume that the finite element model of the body has a "global”
cartesian frame in which the ordinary velocities are measured,

and further assume that the generallzed coordinates of the finite
element model are grouped (or ordered) such that all the x-trans-
lations are together, followed by all the y- then z- translatioms,
and that the translations are followed by sets of x, y, and z ro-
tations. With this implied ordering, it follows that the discrete
mass matrix is partitioned in the form:

[M] = | m m m m m m
xx| xy| xz | xp | xq | xr
m m m m m
yy yz yp yq yr
m m m. [m
zz | zp | zq | zr
m m m
PP Pq pr
(SYMMETRIC) m m
qq | qr
m
rr

g —

with p, q, and r corresponding to rotation coordinates about x,
y, and z axes, respectively. Similarly, the modal transformation
is partitioned as

(4] = [~ _ {z4n,} —{y+ny} {1} [hxf-
~{z+n } {xtn_} {1} [hy]

AR ~{x+n_} {1} | [n,]

{1} I

{1} [o,]

i {1} loz]_

Each square subpartition of Equation A-6 has rows equal to the
number of structural joints (collocation points) of the finite
element model, as does each subpartition of Equation A-7. The
submatrices in the last column partition of Equation A-7,
(b1, 0.1, **, [0_.]1), have colums equal to the number of
defSrmatidn modes ufed to represent the body and are matrices
of modal translation and rotation amplitudes.




(A-8]

[A-9]

[A-10]

[A-11]

The form of [¢°] and of [A¢] is seen immediately from Equation

A-7 in that the only nonzero parts of [A¢] are due to the {n}
vectors. The [¢] matrix is effectively a kinematic velocity trans-
formation consistent with the form of Equation II-25, and it
follows that

(n} = [n_J{c},
tn,} = [n )ee3,

and {nz} = [hz]{E}'

In the Equation A-4, there is seen the product of two constant
matrices$ namely [M][¢°]. The two triple products on the right

of Equation A-4 require evaluation of only the first three row
partitions of [M][¢°]. Thus let us define :

(The first 3 row partitions of [M][¢o]) =

[ le} }PXZ: Px3 ;Px4} {PXSI {PXG [ka.
il el el Pl Pl P[]
}le {P22§ Pz3f :Pz4} {PZS {Pzé .sz 1

with, for example,

{lef = [m_ ] {1} + Enxz‘ {y} - :nxy] {z}

p= N

P 7 P[] o] () P[]
" ][] [P [] [P

It i1s unnecessary to expand each partition of Equation A-9; the
partial product is numerically obtained and the examples of Equa-
tions A-10 and A-1l are just for purposes of illustration.




Now with reference to the intermediate constant matrices given
by Equation A-9 and the definitions of Equations A-4 and A~5, the
following inertial integrals are developed (the reader is urged
to refer back to Chapter II, Section D, particularly Equations
II-88 and II-89):

[A-22] Lbz = |p

[A-23] |bs| = [P

o
N
Al
2 x AL N J
|
T
N
™D
[

- " -

Ny .M N

- ) 3

s o)« B - ol

[A-13)] chJ = [p B] - P E.

[A-14)  fag = [Pel o] - [Pyg E\z
. J . L. -

- = ! - 1
[A 15] gy pr(' hz PZAJ x
[a-16]  Jes] = [P, B] - [P,s 4

L J L 4 L L 4 L
[A-171  Jog| = |P ¢ [0,| - PZGJ };l
L J L 41 L
[A-18] o - py@ h}ﬂ - Px% hy]
! L ] L
[A-19] |og| = Ps h] - [P,s Exy
L. - - ,-_:J - y -
[4-201  fag] = [P g o] - [P E\
[a-21] oo = [P5] ] - [Pye F\
F
F
i

[A-24] _bl: a LPZl E’l}i - Pt + [PYZJ [hz] = [PZZJ El)]
[A-25] [bs = ;PXI‘ E‘}; - Py );' + [Py3J hz]". leSJ [h)J
w261 o] = [l By - Pa] B * [Pao] o] - [Po) [
[4-27] [Cyz]= hyT ipzk: - 512] :Pyk]

{A-28] [sz]" :hij:ka: _ hi :sz]

[a-29] [ny]' h:f :Pyk_ ) hj iP"k]

[A-30] (cu]‘** LhyT f”zz: [‘3] - ?’;J[mzy] H
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(B-1]

(B-2]

[B-3]

APPENDIX B--DEVELOPMENT OF ROTATION TRANSFORMATIONS

There are 12 possible orthonormal rotation transformations, in
terms of Euler angles, that the analyst may choose from in order
to orient one orthogonal triad with respect to another. For each
one of the 12 orthonormal rotation transformations there 1s an
assoclated rotation transformation that is not orthonormal and
that 1s used to transform angular velocity projections (onto a
nonorthogonal vector basis), which are time derivatives of Euler
angles, to projections (onto an orthogonal vector basis) that

are commonly referred to as time derivatives of angular quasi-
coordinates (mx, my and mz).

It is possible, for purposes of digital computation, to automate
the generation of these transformations, given a selected order
of rotation. It is the purpose of this appendix to indicate the
steps and numerical manipulations that are required. To this end,
let us consider one of the 12 types (say a 2-3-2 permutation) as
an illustrative example.

Consider the two orthogonal vector bases, whose relative orienta-
tion we want to describe, to be

= [1
J
K
and
@ - [1]-
il
k

Now if 6;, 65, and 63 are the three successive Euler rotations
about axes (2-3-2) respectively, then it follows that

{a} = [T;){e"}

= |cosf, sinB,

-sinf, cos8,

B-1



{e”} = [Tp){e"}
[B-4] = |cosB, |-sind, 1"
sind; |cosb; "l o,
1 E‘n
and
{e"} = [T3]{e}
_ = |cosfj sind3|| 1
[8-5] . .
-sinf4 cosf3y k
On combining Equations B-3, B-4, and B-5 there results
[B-6] {a} = [T;][T2][T3]{e}.
Now, a 2-3-2 permutation means that the first rotation (8;) is
about the 2nd axis of the {a} basis, the second rotation (8;) is
about the 3rd axis of the {e”} basis and the third rotation (63)
1s about the 2nd axis of the {e'} basis.
Consider the following reference table, which shows the correla-.
tion between Euler rotations and the corresponding axis:
Table B-1 Correlation of Euler Rotations and Axes
Type 1 2 3 4 5 6 7 8 9 10 11 12
8, about {1,I 1,1 1,1 fI1,T 2,3 2,3 {2,3J |2,J |3,K |3,K |3,K |3,K
6, about | 2,7° 2,3 | 3.k | 3.k |3.k |3,k |1,17| 1,1 |1, 1" |1,1° 2,37} 2,3"
fr— —_ — — — —— P — — — — -
63 about #3,k" | 1,3" | 1,i" | 2,3" [1,i"|2,i"] 2,3" 3L,k" 2,57 |3,k"|3,k" 1,1

[(B-7]

Now it is clear that the elementary rotation transformations ([T;],
[T2], and [T3]) always involve 8, 8, 03 respectively, but any one
of them may have three different forms depending on the axis asso-
ciated with its rotation. That is, when ei (1 =1, 2, 3) is about

axis (1) then

;1= |1
COSBi —sinei s
sinei cosei
when 8, is about axis (2),

i

B-2




(B-8]

[B-9]

[B-10]

[B-11]

[B-12]

[B-13]

[Ti] = cosei sin6i
1 ’

—sinei cosei
and finally, when 61 is about axis (3),

[Ti] = cosBi -sinei .

sine1 cosGi

Thus, it is evident that one need only specify a rotation type
(referring to Table B-1) and the three Euler rotations to create
his required orthonormal rotation transformation Equation B-6.
The associated rotational velocity transformations are developed
as follows. Consider, again, the 2-3-2 permutation. For this
case, it is possible to express the angular velocity vector

in two ways:

w = be + Eby + Ebz
and as
= T8y + T, + T,
Combining Equations B-10 with B-11 there results

{w} In]{8},

w | = cosf -5inb3{|sinby 61
or wy = 1 cosf, 1 éz
w, sinfy cosfj 1 éé

T, T

or [(r] = [T3]7[A]".

Now, the inverse tranformation of Equation B-12 is required for
hinge kinematics applications, or it is necessary to express



[B-14]

[B-15]

[B-16]

[B-17]

T

-1
(7171 = [A)" (T3]

=1
(217 £ 1a1T) 73]

(t£10a17) " [E1 T3]

with [E] an elementary row interchange transformation, which for
the (2-3-2) example 1is

L)

and causes ﬁE][A]T) to be of the form:

(E1[a]T = [a ]
1

B
1

1

such that

(te11a17) " = [1/a
-B8/a

J

The form of Equation B-17 1is the same for all 12 types of Euler
rotations, which was the purpose of introducing [E], and this is
convenient with respect ot programming considerations. It follows
that

with a = sinf,,

and B = cosfj.

for types 1, 5, 9 a = cosfy, B = sinbj,,

for types 2, 6, 10 o = sinf,, B = cosfy;

for types 3, 7, 11 o =-sinf,> B = cosfj,

and for types 4, 8, 12 «a cosf,, B = -ginb,.

Also, for each of the 12 types, there is an elementary row inter-
change transformation [E] that can be constructed from sinmple
inspection of the permutation integers of Table B-1 (2-3-2 for
example). In fact, it is unnecessary to actually construct [E]
because information to construct it is merely applied to [Tj]
(interchanging its rows), which produces [E][T3]. Thus, the
veloclty transformation of Equation B-14 can be created for any
one of the 12 possible types with comparative ease.

B-4
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[c-2]

[c-3]
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APPENDIX C--TIME DERIVATIVES OF KINEMATIC COEFFICIENTS

The formulation and numerical implementation of motion equations
for the system of interconnected bodies involves a vector of La-
grange multipliers, {A} (Refer to Equations II-1 and II-6). In
order to numerically evaluate {)A} there is seen to be the require-
ment of calculating time derivatives of kinematic coefficients
(velocity transformations) associated with hinges.

With reference to Chapter II, Section C, it is noted that for
each hinge there is a [bp] and a [bq] matrix of kinematic coef-

ficients. The basic form of these matrices 1s repeated here,
then the sequence of steps necessary to develop their time deriv-
atives is indicated.

The [bp] array is

pr] E5) et o)

Now to develop [BP] and [Bq] it is necessary to expand the fol-

lowing as:

4 ( [r]”! [quJ) SCE iqu] .
) 5% * %] &)

r

) - [ B < ] )
-

2 (]



o (A BSY) - 4 B0 - ) )

The 3x3 matrix time derivatives defined by Equations C-3 through
C-6 have factors (also 3x3 matrix time derivatives) that are ex-
panded in terms of previously defined quantities as follows:

[c-7] -pém] - [SK* ([p :l [o,] (& })] [p m]

o1 (] - e (] e o)
1c-9] ipkq] [151/)31][ ]
with

[C-10] (P’ - 5Kk ([an] (tagh + o)1 (E)
R

) _pq] (& {w}+[al{s}))
[c-11] ;,Rn] [ [q n] ][ ] [qé“]'

[c-12] :é;;‘):' - [SK* (ny] {ém})],

[c-13] [srf;‘)] = [sx* ([hq] {?:n})].

Finally, the time derivative of [11']"1 requires additional consid-
eration. Refer to Appendix B.

-1
The rotation transformation [7] is developed as

o141 117 = (2] (a77)7 ) ),

and it is showm that the form
-1 ~
[c~15] ([E] [A]T) - [A] - [1/a

~-B/a 1

holds for each of the 12 possible Euler rotations. In that [E]
is constant, [A] depends only on 63 and [T3] depends only on €3,
it follows that




where the Euler angle rates (éz and 63) are numerically evaluated
before their use in Equation C-16 through application of Equation
II-3; that is, they reside in that part of the state vector time

derivative {;} that has been evaluated.



APPENDIX D--MONITOR OF SYSTEM MOMENTA AND ENERGIES

Development of state equations for predicting dynamic response of
a system of interconnected flexible bodies involves a consider-
able amount of complicated formulation and programming code. This
is certainly a true statement, independent of the particular
method of analytical mechanics on which one might select to base
development.

The inherent complexity of such a digital simulation program gives
rise to the question: is there any way of checking the program
validity? 1In an attempt to answer this question, one might sug-
gest comparing results with those of other dynamic simulations
or hardware tests. If such a comparison is positive, then cred-
R 1bility (to a degree) 1s established. However, there is another
absolutely necessary (if not sufficient) condition that must be
passed to establish validity. For a dynamlic system free of ex-
ternal forces and torques, angular and linear momenta must be
conserved; also, total energy (kinetic plus potential) must not
increase in time.

It is a desirable feature for such a digital simulation program
to have a built-in monitor of momenta and energy. The purpose of
this appendix is to develop (in terms of previously identified
state variables and system parameters) the expressions for total
system angular and linear momentum vectors and the total system
energy.

The total angular momentum about the inertial reference can be
expressed (from definition) as

NB
-1 ®=3% S (% x ¥) an
=1V

3

with the summation over the number of bodies (NB) of the system,
with X being the vector positioning the elemental mass (dm) from
the inertial origin, with v being the absolute velocity of dm,

and with integration taken over the volume of the jth body (Vj)'

Also, from definition, the total linear momentum with respect to
the inertial frame is



[D-2]

[D-3]

(D-4]

{p-5]

(D-6]

(D-7]

_glz _
L=\ S v dm.
j=1 Vj_

Now, consistent with the notion of a body fixed axis system and
with a consistent velocity field assumed (Refer to Chapter 11,

Section 3. ), it follows that, over the volume of the j body,

X = xR + po ; ’
and
v = Vg, * 8 (5, + )+ ¥, &

On substituting Equations D-3 and D-4 into D-1 and D-2 and integra-
ting, it becomes clear that the first six elements of the product

-

{p}j = [m]j {U h

= {{p,}
{pv}
{pé} 3
are projections of the jth body's angular and linear momentum

vectors onto the moving body axis system. In fact, {p } includes

the effect of momentum wheels (See Equation II-109), which surely
must be accounted for.

Thus, the angular momentum of the jth body (about its body=-origin)

is

hj = ejJ {pw}j,

while the linear momentum of the jth body is

3& o J oyl

where ;5 ig the unit vector basis associated with the body fixed

reference triad.




Now rotation transformations that relate vector components in
each body system to the inertial system exist; also, position
vector from the inertial origin to the reference polnt of each
—— body exists. It follows that

NB

[D-8] L -Z zj
j=1
NB

.Z {oRj] {pydys

i=1

and that
NB

[D-9] H = Z-: (Ej + By ¥ zj)
S5 (B s [ ([ )

3=1 -

The total angular and linear momentum vectors are calculated by
the program in the manner indicated in Equations D~8 and D-9, For
a variety of torque/force-free configurations that have been ex-
I amined, momentum has been conserved within acceptable numerical
tolerances,

The total energy is calculated (Refer to Equations II-38 and II-
42.) as

N3
- - fyl
[D-10] T + ¥ az(]_ujj [ml; iy +
j=1

le)y ey {E}j).

The kinetic energy contribution of embedded momentum wheels is
included (as it must be), because [m]j includes momentum wheel

inertial coupling terms and {U}j includes momentum wheel spin
rates (és).
Potential energy, additional to that shown in Equation D-10, comes

about in the event that there is a "sprung" hinge; say for example,
associlated with the Bk coordinate. If the spring force/torque is

linear with Bk’ then additional potential energy is

m-111 \/ - »Zk: K 62 .

(additional) D=3
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[E-5]

APPENDIX E--ROOT LOCUS SOLUTION TECHNIQUES

The Root Locus solution procedure that 1s included in the digital
program was supplied by Goddard Space Flight Center (GSFC) per-
sonnel and is included here for completeness. The following dis-
cussion has been extracted from GSFC Branch Report No 254 dated
October 2, 1973 (Mr. Raymond V. Welch, author).

Two expressions are identified as the basis for initiating the
solution process.

K P(s)

A |= 1t

P(s)
Q(s)

= 180° K320

Expressions E-1 and E~2 contain polynominal expressions for the
conventional open loop expression

KG(s) H(s) = KP(s)/Q(s).

The solution process requires a starting point (known to lie
somewhere on the loci) from which to generate the desired locus;
therefore, assume there exists a known value of s, say Sy such
that

P(sg)

e = 1807

il.e., 5, 1s a point on the locus. A good starting point might be

an open loop pole or zero as these points are usually known a
priori; however, any point along the branch of the locus to be
determined may be used. The locus is then traced using the fol-
lowing procedure.

Step 1

Draw a "small" circle of radius r centered at s, and define S,

to be the values of s which lie on this circle (See Figure E-1.).
These values of s_ are determined analytically by:

ja

s =8 + re
[ 0



[E-6)

[E-7]

[E-8]

[E-9]

where 6 1is meausred as the angle generated by a counterclockwise
Trotation from the positive real axis of the s~plane. If the locus
does not terminate inside the circle, then there must exist at
least two values of 6 between zero and 360 degrees such that

P<Sc)
Q(s )

[

= 180°

(More than two values of 6 will exist that satisfy this equation
1f breakway points of the locus are encircled or if the circle is
large enough to intersect other branches of the locus.
to avoid changing branches, r must be kept smaller than the distance
between the branches of the locus). Suppose that for 6 = 8; and

6 = 8, the above equation is satisfied, then s.1 and s, are points

on the locus where

s .=8 + rejel
cl o

0
s =5 <+ rej 2
o

c2

See Figure E-1. These roots are found by an iterative process.

Step_ 2
Define y(6) by

p(8) =/P(s )
Qs )
where 8, is defined above and 6 is any arbitrary angle. If y(8)

does not equal 180 degrees increment 6 by A6 and reevaluate ¢ (8).
Continue this process until ¢ (8) passes through 180 degrees,

(p(B8) is a monotonic function across the locus, thus {(8) crossing
180 degrees implies the locus has been crossed). When ¥(8) passes
through 180 degrees, redefine A6 as

A6 = —KAGO 0<K<1

new 14’
and again calculate Y(6). If (8) does not equal 180 degrees for
this point, increment 6 by this new A8 and recalculate ¥(6). Con-
tinue this process until ¢(8) again crosses 180 degrees. Reduce A6
again as above and repeat the previous operation until A8 = §,
where § 1s some predefined small positive number. At this time
¥(9) will be 180 +¢ degrees, where c© is a '"small" angle whose size
is a function of §; thus a root on the locus has been found. This
root is either 8.1 OF 8_5» depending on the initial choice of 6

and on the initial sign of A8. For this subprogram, the initial

E-2

Consequently,
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Figure E-1 Variable Definitions at Starting Point of Locus
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Pigure E-2 Search Area Definition for Finding Roots After the
Pirgt Root i8 Found.
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[E-10]

[E-11]

[E-12]

value of @ is optional, but if no choice is made a value of 180
degrees is used. Also the initial increment A8 is set at 10 de-
grees with the change in A8 for every 180 degrees crossing defined
by

1

Aenew " - 10 %%14

It was found that & = 1078 degrees was sufficiently small to
insure €< .001 degrees except possibly for values of s near the
open loop poles or zeros. Assume that 6 is chosen initially so
that the root found is located at the point s as defined above

. and as shown in Figure E-1, and suppose it iscéesired to continue

the locus in this direction.

Step 3

Draw a circle of radlus r centered at S.1° Again if the locus

does not terminate inside the circle, the locus will intersect
the circle in at least two points. Because the circles located
at S5 and sCl are of equal radius, one of these points is s, as

shown in Figure E-2. This root is eliminated from the search
routine by restricting the range of 6 to

8, -120° <8 <8, +120°

These limits are chosen as they are the points where the circles
located at s, and S.1 intersect. Thus the search for a new root

is conducted only in a previously unsearched region. The initial
angle 1is chosen at 6 = 6; - 120 degrees with A6>0 and step 2 is
repeated until 40 = §, i.e., another root is found.

Step 4

Draw a circle of radius r centered at the root found in the pre-
vious step and repeat Step 2 with the restrictions on 6 as defined

in Step 3.

Repeating Step 4, the roots along one branch of the locus are de-
termined. The value of the gain, K, for each of these roots is
calculated from

Q(s)

K= P(s)
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